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Chapter 1 Crystal Structure

1.1 Periodic Crystal Structures

v" The existence of a periodic structure lies at the heart of modern
solid state physics.

v’ Main distinction to liquids/amorphous solids.

1.2 Fundamental Types of Lattices

1.3 Symmetry and Classifications of Bravais Lattices,



1.1 Periodic Crystal Structures



1.1 Periodic Crystal Structures

A perfectly periodic crystal?

«crystal» made
out of glass

The amethyst ironstone



1.1 Periodic Crystal Structures

Crystal = Bravais lattice + motif/basis

Réseau .de motif Cristal
Bravais
o & 0 ‘ Thg cr'ys‘rc.xl.can also be dgscribed
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The ideal crystal

Cristal ideal = infinite repetition of identical basic structures

Bravais lattice ~ <0=>  translational symmetry

l = 4
Cristal Motif (basis)

Bravais lattice:
In each point of the Bravais lattice, we see the crystal identically

to itself in chemical composition, structure and orientation
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2D: R=na+mb 3D: R:ng+mb+pz
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Bravais lattice and primitive cell

|
Wigner-Seitz cell /r. /—/7 /\/7
elementary cells /

Non elementary o
cells

Primitive cell = the volume of space that translate to any point of the Bravais
lattice completely fills the space without overlapping
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Wigher-Seitz Cell

reflecting the network of
symmeftry




1.1 Periodic Crystal Structures

(1) simple cubic, sc

—_—

a,=ax d,=ay a,=azg
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(2) body-centered cubic, bee

a, :%()2+ﬁ—2)
a, :g(—£+j/+2)

a; :%()2—)?+2)

(3) face-centered cubic, fcc

1.1 Periodic Crystal Structures
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1.1 Periodic Crystal Structures

(4) simple hexagonal, sh
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1.1 Periodic Crystal Structures

Crystal Array & Crystal Plane

1. crystal array: The direction of a line consists of atoms/bases in
a crystal.

Position vector of any lattice point on the crystall array through
the origin:

R=1la +1la,+la,

Lil:l=1:0 L > [1L,1,]

< >

index of crystal array

equivalent crystal arrays
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1.1 Periodic Crystal Structures

2. Index of crystal plane: labelling the direction of crystal plane

| ek

11
hI:hZ: —;

r

> (hhyh)

index of crystal plane

Miller indices use the primitive vectors a,b,¢ consisting the

convential unit cell.

{ }-- equivalent crystall planes

A family of lattice planes: a set of parallel, equally spaced lattice

planes (with distance 4, , , ) , which together contain all the

points of the 3D Bravais lattice. 14



Crystal planes: Miller indices

Plan (3,2,6)
/\

—
i

= Considering the intersections of the plan with 3 axes

Intersection on ma, nb, pc

= Taking the inverse numbers m, n p
h'=1/m,k'=1/n,I'=1/p

= We take the triple of the smallest integers that are in the
same ratioas h', k', I'.
h=rh', k=rk',|=rl h=3 k=2,1=6

15



1.2 Fundamental Types of Lattices



Simple cubic, SC

1.2 Fundamental Types of Lattices

1/8 atom

= Cubic structure = Bravais Network.
=1 atom per unit cell.
= 6 carbon nearest neighbors.

= Filling rate of 52%
(model of hard spheres in contact)

= 2 cs elements crystallize in the structure:

Fand O

1 atom el

1/8 atom

Body centered cubic, BCC

= Centered cubic structure = Bravais
Network, but the cube is not a primitive
cell

= 2 atoms per unit cell..

= 8 carbon nearest neighbors.
= Filling rate of 68%.

= Exemples: W, Mo, Ta

17




1.2 Fundamental Types of Lattices

Many elements crystallize in
compact crystal structures.

Crystal structures encountered particularly in
molecular and metallic crystals
(spherical symmetry of the electron cloud of each atom)



Compact hexagonal Structure (h.c.p.)
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Q: Is it a Bravais lattice?

= 2 atom per unit cell.
No, two interpenetrating

= 12 carbon nearest neighbors.
hexagonal Bravais lattices.

= Filling rate of 74%.

What about FCC?



Face-centered cubic structure (fcc)

1/2 atom 1/8 atom ABCABCA...

= The face-centered cubic structure is a Bravais lattice.
= 4 atoms per unit cell.

= 12 carbon nearest neighbors.

= Filling rate of 74%

20



Crystal structures: diamond and zinc-blende

Structure diamond Structure Zinc-Blende

B Examples:
C (diamant) a=357 A GaAs a=565A4
Exemples: | si a=543 A InAs a=6,04A4
Ge a=5,66 A SicC a=435A4

Noncompact crystal structures encountered in particular in crystals
covalent where the directivity of the link is important




Examples of ionic crystals

Structure NaCl

Structure CsCl

O 0
L
o
(s
o O
s P
C/Cs*
. .
Examples: Examples:
Cu Pd a=299 A Mg O a=4,20A
Cs Cl a=4114 Na Cl a=563A4
Cs Br a=429 A KCl a=629 A

Compactness of the structure also depends on the intensity of the
electrostatic interaction, and the relative size of the ions 9



1.3 Classification of Bravais Lattices



Few solid state physicist
need to master the whole
analysis of crystallography

©

I. Symmetry Elements

Tanslation symmetry + Rigid Operations

1. Inversion Symmetry:
v |:> 7 = —7 through a lattice point transform the lattice into

itself, denoted as i.

2. Rotation Symmetry:

/4
Rotate the crystal about an axis Iand take the lattice into

itself. It is called n-#/ axis, denoted as C,.

The lattice site can be considered as hard spherical ball which do
not affect symmetry.
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1.3 Classification of Bravais Lattices

Theorem: The allowed rotational
axes can only be 1st, 2nd, 3rd, 4th,

and 6th axes.

n=12,3,4,6

3. Reflection Symmetry:
The crystal is invariant after a reflection across a plane, denoted

as O (m) .
25
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1.3 Classification of Bravais Lattices

VOLUME 53, NUMBER 20 PHYSICAL REVIEW LETTERS 12 NOVEMBER 1984

Metallic Phase with Long-Range Orientational Order and No
Translational Symmetry

D. Shechtman and I. Blech
Department of Materials Engineering, Israel Institute of Technology— Technion, 3200 Haifa, Israel

and

D. Gratias

O
.2 .
19° /_7 \ . 2ie
6%05 <=

NN R
‘ / \ ’/ 79.2° 58.29° 37.38°

b A FIG. 2. Selected-area electron diffraction patterns taken from a single grain of the icosahedral phase. Rotations match
= = those in Fig. 1.




1.3 Classification of Bravais Lattices

I1. Elementary symmetry operation

1. i,C,,0(m)

2. n-th inversion symmetry

Therefore, in total there exists

1,2,3,4,6, 4, i, m eicht independent symmetry operations

+ translation through Bravais lattice vectors.

28



1.3 Classification of Bravais Lattices

II1. Point Group and Space Group

The full symmetry group of a Bravais lattice contains only

operations of the following form:

1. Translation through Bravais lattice vectors.
2. Operations that leave a particular point of the lattice fixed.

3. Successive applications of the operators of type (1) and (2).

v Operations of type (2) form the point group
v' 23 point groups (but Bravais lattices can have 7 out of them).

v Add translation operations, 230 space groups.
29



1.3 Classification of Bravais Lattices

3. Screw Axis

rotation + translation

4-fold right

glelgle[STe
Rotate 2t/n around u axis, and screw axis.

translate / times of 7/n, the crystal

restores its original status.

4. Glide Plane

reflection + translation

Reflect across a plane, and then
translate along some direction of

distance 7/n.




1.3 Classification of Bravais Lattices

Bravais lattices in 2 dimensions

9 O
b ‘
S 0
5
D,
lal # |b], 8 # 90° ig} : llzll‘. ?pj e lal = [bl, 8 = 120° lal = |bl, 8 = 90°
m 0 h t

In two-dimensional space, there are § Bravais lattices, grouped into 4 crystal
families (of the same point group).



1.3 Classification of Bravais Lattices

IV. 7 Crystal Systems and 14 Bravais Lattices

Table 1 The 14 lattice types in three dimensions
Number of Restrictions on conventional
System lattices cell axes and angles
Triclinic 1 a, ¥ a; ¥ a
aFLFy
Monoclinic 2 a, F ay ¥ ag
a=vy=90°#p
Orthorhombic 4 a, ¥ da; ¥ day
Tetragonal 2 a, = ay ¥ as
Cubic 3 ) = a; = a;
Trigonal 1 a) = dy = dy
a =B =vy<120° # 90°
Hexagonal 1 a, = ay ¥ ag
a =B =90°
v = 120°

7 distinct point group and 14 distinct space group for Bravai lattice!

Frankenheim (1842) miscounted this number as 15;

A. Bravais is the first one get a right counting (1845). 32




1.3 Classification of Bravais Lattices
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Homework: monoclinic group

1. Why there are only two monoclinic lattices?
2. Monoclinic system can also be shown as following, is it right?

p #90° B #90°

a,y=90° a,y=90°
v

N <



