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4.0 Elastic Waves

Fields & “Elementary” Particles in Condensed Matter Physics
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Atoms are in a perpetual movement in solids：
ü Low temperature: thermal fluctuations are weak, vibration 
around its equilibrium position, elastic wave
ü High temperature: strong thermal fluctations, melting

Propagates along, say, [100] direction, entire planes of atoms move in phase
Problem is reduced to 1D!

4.0 Elastic Waves

Elastic Waves in solids

parallel to wave vector K perpendicular to wave vector K

us is the displacement of the plane s from 
its equilibrium position, 1 longitudinal + 
2 transverse modes.
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4.1 Elastic Waves in a chain

4.1 Elastic Waves in a chain

n1-n2-n 1+n 2+n

1-nu nn uua -+ +1

ü Problem simplified as a chain in 1D, N.N. atoms (equilibrium

positions) separated by a distance of a (lattice constant).

ü The displacement of n-th atom is denoted as un..
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The potential energy of a pair of N.N. atoms： ( )af
Relative displacement between n and n+1 atoms:  
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Expand around the equilibrium position：

nn uu -= +1d

Corresponding, the two-site potential changes to：

4.1 Elastic Waves in a chain

( )df +a

Minimal Value of
Potential Energy
at equil. position

Vanishes at
equilibrium position

Harmonic Term for 
Elastic Deformation
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1. E.O.M in the harmonic approximation

Consider a small , i.e., a weak vibration, expand the 
potential to the order of  
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Elastic force between two atoms:
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4.1 Elastic Waves in a chain
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l In the harmonic approx., the atoms are connected via “springs”. 
l The 1d atomic chain can be regarded as coupled harmonic 

oscillators.
l (Elastic) lattice wave can propogate in the 1d atomic chain as 

collective excitation.

Consider only N.N. coupling，the total force on n-th atom：

( ) ( ) ( )nnnnnnn uuuuuuu 21111 -+=--- -+-+ bbb

with corresponding e.o.m.：
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4.1 Elastic Waves in a chain
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2. Lattice Wave
There exists a e.o.m. for each atom, # of equations equals

# of atoms.

The solution is a traveling wave：

( ) ( ), i qna tu na t Ae w-=

4.1 Elastic Waves in a chain



9

3. Dispersion Relation

( ) ( ), i qna tu na t Ae w-=

4.1 Elastic Waves in a chain

Substitute it in the e.o.m.,

( ) ( )1 12 2iq n a iq n aiqna iqnaM e e e ew b + -é ù- = + -ë û
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M
b2

( )qw

q

u is large,

long wavelength appr.，

l,0®q

22
sin qaqa

»

shows a linear relation with , the same as that of the elastic 

weave in the continuous medium. i.e., in the l.w.a. the discreteness 

of lattice site can be neglected. --Acoustic branch

w q

4.1 Elastic Waves in a chain

u As q increases,          deviates from linear relation.

q-w q-w q-w

q-w
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u when ,     achieves its max valueq
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3. Periodic functions of q

is a period wavefunction of q, w ( )q
a
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—integer, periodn
a
p2

——primitive reciprocal lattice vector 

hG
a

n =
p2

——reciprocal lattice vector

( ) ( )qGq h ww =+ ( ) ( )quGqu h =+

4.1 Elastic Waves in a chain
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recall:



12

The wave length (vector) related to a specific lattice wave is 

not unique, there exist a series of q, different from each other 

by                       . 
hGah =× p2

Only wavelengths longer than 2a are needed to represent the 

motion.

Therefore, within the range of         ，q can fully 

characterize all allowed lattice waves.

aqa pp ££-

—— 1st  Brillouin zone

4.1 Elastic Waves in a chain
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q and q+Gh correspond to exactly the same lattice waves
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ü The wave represented by the solid curve conveys no information 
not given by the dashed curve. 

4.1 Elastic Waves in a chain



14

4.1 Elastic Waves in a chain

4. Standing Wave 

aq p±=At the Brillouin zone boundary )exp(qsauus =

Does not represent a traveling wave, but a standing wave

This situation is equivalent to Bragg reflection of x-rays!

a π/2
K is along 
the atomic chain

2π/q
n=1
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5. Periodic Boundary Condition

Born–von 

Karman 

boundary 

condition

( ) ( )aNauau += ( ) ( )naNaunau +=

( ) ( )( )i q N n a ti qna tAe Ae ww + -- =

1iqNae = 2qNa lp= aN
lq p2

= l  integer

4.1 Elastic Waves in a chain
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1st B.Z. a
q

a
pp

£<-

22
NlN

£<-

q has N discrete values -- equals # of sites/atoms in the chain

All q values within 1st B.Z. describes all vibration modes, each 

q corresponds to a lattice wave vector.

For 1D chain, all N q points are uniformly distributed:

distance btw q points：
LNa
pp 22

=

4.1 Elastic Waves in a chain
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6. phase and group velocities 

qg ¶
¶= wu

qp
wu =

group velocity：describe the speed of the envelope of the wave 
packet (given a small range of q, such that the envelope does not 
distort too much during propagation).

phase velocity：the rate at which the phase of the wave propagates 
in space, for a pure lattice wave with specific frequency w and 
lattice vector q

4.1 Elastic Waves in a chain
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4.2. 1D chain with two atoms per primitive cell
1. Equation of Motion

N primitive unit cell, each of which contains two different 

atoms, lattice constant 2a, atom mass             .

atoms with mass m: ...,22,2,22..., +- nnn

atoms with mass M: ...,32,12,12..., ++- nnn

Displacement of each atom (with respect to equil. position):

mM >

n222 -n 12 -n 22 +n12 +n

4.2 Diatomic Chain

,...,,..., 321212 ++- nnn uuu,...,,..., 22222 +- nnn uuu
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( )nnn
n uuu
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t
uM b

b — elastic constant between atoms

2N atoms, 2N equations, the correlated motions of atoms 
constitute a wave.

Consider only inter. between N.N. atoms & hamornic approx.：

4.2 Diatomic Chain
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2. dispersion relation

subs. into the E.O.M., we get

( )2
2

i naq t
nu Ae w-=

( )(2 1)
2 1

i n aq t
nu Be w+ -
+ =

( ) ABeeAm iqaiqa bbw 22 -+=- -

( ) BAeeBM iqaiqa bbw 22 -+=- -

( ) ( ) 022 2 =-- BqaAm cosbwb

( ) ( ) 022 2 =-+- BMAqa wbb cos

reorganize it:

4.2 Diatomic Chain
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two different w-q relations, meaning two branches of lattice 

waves.

Condition of the existence of solutions

4.2 Diatomic Chain
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3. First B.Z. 

is a periodic function of    , with period             . ( )q2
±w q a22p

( )q
a

sq 22
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reciprocal lattice vector: 
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p

( ) ( )qGq h
22
±± =+ ww

one can also prove:

( ) ( )quGqu nhn 22 =+

( ) ( )quGqu nhn 1212 ++ =+

4.2 Diatomic Chain
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therefor and describe exactly the same vibration mode, 

we can restrict     within a peorid        , i.e., a primitive reciprocal 

lattice vector. 

hGq +q
q ap

A symmetric choice:
2a ——lattice constant

——first Brillouin zonea
q

a 22
pp

£<-

4. optical and acoustic branches 
pp £<- qa2(1) extreme values 
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p±®Ø short wavelength limit
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4.2 Diatomic Chain
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ü There exist a gap between the 

top of acoustic branch and the 

bottom of optic branch.

Ø A forbidden region. 

,       <-wmM > +w

low frequency—acoustic

high frequency—optic
-w

+w m
b2

M
b2

a2pa2p-

µ
b2

q

( )qw

ü The gap depends on b, the difference between m and M.

4.2 Diatomic Chain
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acoustic branch:
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4.2 Diatomic Chain
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Same as simple atomic chain, linear dispersion relation in 

the LWA, ,0®q 0®-wif
optic branch：
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acoustic branch optical branch
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4.2 Diatomic Chain
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(2) vibration amplitude
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4.2 Diatomic Chain
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Two atoms in the same primitive cell have the same amplitude & 

phase, i.e., their motions are exactly the same.

——long wavelength acoustic wave represents the vibration of 

mass center.

Longwave length approx.
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A,0®q

4.2 Diatomic Chain
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Optical Branch:
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A N.N. atoms vibrate in opposite directions

4.2 Diatomic Chain
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ü The center of mass (in the primitive cell) is stationary, 
two atoms move in opposite direction (relative to the 
center of mass).

long wavelength limit

4.2 Diatomic Chain
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5. Periodic Boundary Condition

a
q

a 22
pp

£<-

N primitive cells, each contains two different atoms:

PBC： 121 += Nuu

2 1i Nqae =

2 2qNa lp= ,   l--integer

Na
lq p

=
a

q
a 22

pp
£<-

22
NlN

£<-

values are within the 1st B.Z.q

4.2 Diatomic Chain
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Generally, N primitive cells, P atoms in each cell.

# of q values = N (# of primitive cells)

# of vabration branches：

# of vabration modes：

l is an integer in , N different values ® # of q 

values is also N (equals # of primitive cells). 

For each q, there are two modes (acoustic & optical).

2 ~ 2N N-

First B.Z.，2N independent modes.

Pµ

PNµ

4.2 Diatomic Chain
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4.3  Normal coordinate, Phonon
I. normal mode and collective excitation
1D atomic chain：N primitive cells, N independent modes, 

consider only N.N. coupling, under the harmonic approx.

å=
n

nuMT 2
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!

( )å -= +
n

nn uuU 2
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kinetic:

Total energy of the system:

( )åå -+= +
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1 b

!

4.3 Normal coordinate, Phonon

potential:
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22
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1 pjw

Hamiltonian becomes a sum of that of N harmonic oscillators

new coordinate and momentum —Normal Coordinate.

ü Summation over l contains N terms, each of which 

describes a linear Harmonic oscillator with frequency wl.

ü We establish the equivalence between the vibration of N 

interacting atoms and N independent hamornicl oscillators.

Quite general conclusion, also valid for 3D crystals.

4.3 Normal coordinate, Phonon



II. Phonon
phonon：energy quanta in the crystal vibration.
According to the quantum theory, the energy of harmonic 

oscillator is quantized as
lll n we !÷

ø
ö

ç
è
æ +=

2
1

Total energy of crystal vibration: ll
l

n we !÷
ø
ö

ç
è
æ +=å 2

1

Each vibration mode's energy taks as its unit, one adds intger 

times of to the system when exciting a lattice wave.

—— energy of the phonon

üEach lattice wave is a mode, corresponds to a kind of phonon.

lw!

lw!

4.3 Normal coordinate, Phonon



Quasi particle：

n average number of q-state phonon:

( )
1

1
-

= TkBqe
qn w!

——phonon is boson, 
obey Bose-Einstein Stat.

excite from ground state to                     excited state, one 

costs energy  , and creat nl phonons of freqency     .
lln w!÷

ø
ö

ç
è
æ +

2
1

lln w! lw

n energy: w!

n quasi momentum (crystal momentum): qp !
"

! =

4.4 Normal coordinate, Phonon

Lattice wave scattered when propagating in the crystal→

phonon-phonon scattering；

Phonon number does no conserve, it can be created or annihilated.
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4.4 Vibration of 3D lattices
I. three-dimensional simple lattice
One-dimension (1D)：

( )nnn
n uuu

t
um 2

d
d

112

2

-+= -+b

( )ni qx t
nu Ae w-= ( )i qna tAe w-=

E.O.M.：

Solution：

3D: suppose the motion of each atom follows the form below,

( )ni q R t
nu Ae w× -=

!!!!

4.4  Vibration of 3D lattices
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indicates the direction where the wave propogates;q!

offers the vibration amplitude and its direction 
(polarization)

A
!

: longitudinal;                : transverseqA !! // qA !!
^

substitute into the E.O.M., and get 3 

associated equations on (with components                 ).

( )ni q R t
nu Ae

!!!! w× -=

A
!

zyx AAA ,,

equivalent to a matrix equations33´

get a determinant33´

4.4  Vibration of 3D lattices
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All of these 3 dispersion relation curves pass through the 
origin, i.e., they are all acoustic waves!

is a 3rd order equation of     , which leads to three solutions, 

i.e., 3 branches of disperion relations.

2w

Note：

ü For 3D case, the dispersion is not neccesarily isotropic in all 

directions, therefore, 2D plot can only show          relation on 

some specific directions.

ü To reveal the complete info. of the phonon dispersion relation, 

one has to adopt a contour-like plot for all     points.  q!

4.4  Vibration of 3D lattices

q-w
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4.4  Vibration of 3D lattices
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II. 3D compound lattice
Consider P different atoms in a primitive cell, each atom 

corresponds to a E.O.M., therefore it contains P equations in a 

primitive cell:

equiv. to 3P scalar equations

matrix equationPP 33 ´

is 3P-rank equation of       having 3P roots, leading to 3P 

dispersion relations:

ü3 acoustic branches, and rest 3P- 3 optical branches.

2w

4.4  Vibration of 3D lattices
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III. first Brillouin zone

and describe exactly the same vibration states, so 

by using all    values within a primitive cell in reciprocal 

lattice, one is capeble to discribe all possible lattice waves.

q! hGq
!! +

q!

Select a symmetric region centered at , with the size of a 

primitive reciprocal cell —— 1st Brillouin zone:

0=q!

22
i

i
i bqb

£<-

4.4  Vibration of 3D lattices



44

IV. periodic boundary condition

Lattice with N primitive cells, the numbers of cells along                
are 

321 ,, aaa !!!

321 ,, NNN 1 2 3N N N N= × ×

Under periodic boundary condition：

1i iiN q ae =
2i i iN q a lp=

il ——integer

ii

i
i aN

lq p2
=

4.4  Vibration of 3D lattices
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22
i

i
i bqb

£<-
iii

i

i aaN
l

a
ppp 2

2
122

2
1

£<-

22
i

i
i NlN

£<- can choose       values, so does     . 
il iN iq

ü A primitive cell contains P different atoms, thus there are 3P 

different vibration branches, of which 3 are acoustic branches;

ü In a crystal containing N primitive cells, there are 3PN modes 

in total, of which there are 3N acoustic, and 3N(P-1) optical 

modes.

4.4  Vibration of 3D lattices

Total number of     values                    , equals # of primitive 

cells in the crystal.

q!
1 2 3N N N N= × ×


