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Chapter 4 Crystal Vibration

4.0 Elastic Waves

4.1 Elastice Waves 1n a chain

4.2 Two Atoms per Primitive Cell

4.3 Quantization of Elastic Waves & Phonon

Momentum

4.4 3D Crystal Vibration
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Fields & “Elementary” Particles in Condensed Matter Physics

Name Field
- Electron e
AANNANA~> Photon Electromagnetic wave
e AN Phonon Elastic wave

_l | |_.. Plasmon Collective electron wave
—\MJ—" Magnon Magnetization wave

— Polaron Electron + elastic deformation

— Exciton Polarization wave
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4.0 Elastic Waves

Atoms are 1n a perpetual movement in solids:

v Low temperature: thermal fluctuations are weak, vibration
around 1ts equilibrium position, elastic wave

v High temperature: strong thermal fluctations, melting

Elastic Waves in solids

Propagates along, say, [ 100] direction, entire planes of atoms move in phase

Problem is reduced to 1D

parallel to wave vector K
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u, 1s the displacement of the plane s from
its equilibrium position, 1 longitudinal +
2 transverse modes.
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4.1 Elastic Waves 1n a chain

v' Problem simplified as a chain in 1D, N.N. atoms (equilibrium

positions) separated by a distance of a (lattice constant).

v" The displacement of n-th atom is denoted as u,, .
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The potential energy of a pair of N.N. atoms: ¢(a)

Relative displacement between » and n+1 atoms: 6 =u__ —u,

Corresponding, the two-site potential changes to:

dla+95)

Expand ¢(a +S) around the equilibrium position:

¢(a+5)=qi€a) @85+_[SX¢1 .

Minimal Value of T T
Potential Energy Vanishes at Harmonic Term for
at equil. position equilibrium position Elastic Deformation
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4.1 Elastic Waves 1n a chain

1. E.O.M in the harmonic approximation

Consider a small ¢, i.e., a weak vibration, expand the
potential to the order of 5~

oo+ 5) = ole) + %(gjjjly

Elastic force between two atoms:

o 00 _ _(@ﬂ 5
06 ox* )

_ (2
- (5],

f=-p5=-Pu,, —u,)

elastic constant
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® In the lharmonic approx., the atoms are connected via “springs”.
® The 1d atomic chain can be regarded as coupled harmonic

oscillators.
® (Elastic) lattice wave can propogate in the 1d atomic chain as

collective excitation.

- Na =

l %DDYDDDDD"‘DDDDDVODDODYODDDD*DDODD"DDDODVDDDDD“‘DDDDD“‘ODDDDYDDDDDVODDDD“‘DDDDD“ODDDD |

Consider only N.N. coupling, the total force on n-th atom:

ﬂ(un+1 — un)_ﬂ(un - un—l ) = ﬂ(un+1 + un—l — 2un)

with corresponding e.o.m.:
d2
dt’

M _ﬂ(un+1+u _Zun) 7
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4.1 Elastic Waves 1n a chain

2. Lattice Wave

There exists a e.o.m. for each atom, # of equations equals

# of atoms.

The solution is a traveling wave:

u(na,t) = Ae'tma=e)

AVAVAVAVAVAVAVA!
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4.1 Elastic Waves 1n a chain

3. Dispersion Relation
u(na,t)= Ae'lm=o")

Substitute it in the e.o.m.,

—sz lqna ﬂ[ n+1 iq(n—l)a _ Zeiqna]

Mao* =24(1-cosqa)

a):\/Z,B(l—cosqa) 5 (Aﬂ[j

M

--—-dispersion relation
9
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4.1 Elastic Waves 1n a chain

® 40,1 is large, t olg)
long wavelength appr.,

qa 494

sin
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T
a

@ shows a linear relation withq, the same as that of the elastic
weave in the continuous medium. i.e., in the l.w.a. the discreteness

of lattice site can be neglected. --Acoustic branch

@ As g increases, o — ¢ deviates from linear relation. 10
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4.1 Elastic Waves 1n a chain

ﬂ [ ) [
€ when ¢ =t —, @ achieves its max value ”
a recaill.

sin 94
2

ewr(f) PN

3. Periodic functions of g

@ is a period wavefunction of ¢, @ (q+ n) w(q)

27
n —integer, period 4 primitive reciprocal lattice vector
2 : :
n—=aG, reciprocal lattice vector

a

|a)(q + G, ) = a)(q)l |u(q + G, ) = u(q)l

11
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4.1 Elastic Waves 1n a chain

The wave length (vector) related to a specific lattice wave is

not unique, there exist a series of ¢, different from each other

by h-2z/a=G,-

Only wavelengths longer than 2a are needed to represent the

motion.

Therefore, within the range of — 7/a <g<7x/a, ¢ can fully

characterize all allowed lattice waves.

Ist Brillouin zone .




a S5a q

v" The wave represented by the solid curve conveys no information
not given by the dashed curve.

13
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4.1 Elastic Waves 1n a chain

4. Standing Wave

At the Brillouin zone boundary g =+7/a u, =uexp(gsa)

u, =uexp(Xism) =u(—1)

Does not represent a traveling wave, but a standing wave

This situation is equivalent to Bragg reflection of x-rays!

2d sin 0 = nA
7 TN
a /2 2m/q _
K is along n=1[

the atomic chain i
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4.1 Elastic Waves 1n a chain

Born—von

Karman

boundary

COlldlthIl The Born-von Karman or periodic boundary condition for the linear chain.
u(a)=u(Na+a) u(na)=u(Na+ na)

Aei(qna—a)t) =Aei(q(N+n)a—a)t) |:>

™ =1 qNa=2rl q=—-— [ integer

15
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4.1 Elastic Waves 1n a chain

T T
1st B.Z. —<¢g<

<Il<

a ' a
N e
2 2

)

q has N discrete values -- equals # of sites/atoms in the chain

All g values within 1st B.Z. describes all vibration modes, each

q corresponds to a lattice wave vector.

For 1D chain, all N g points are uniformly distributed:

distance btw ¢ points: 27 — 27

Na L

16
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6. phase and group velocities

phase velocity: the rate at which the phase of the wave propagates
in space, for a pure lattice wave with specific frequency w and
lattice vector ¢

w A
U, = ) = —
l.p -

NNNAANNNANNNAAANNN

group velocity: describe the speed of the envelope of the wave
packet (given a small range of ¢q, such that the envelope does not
distort too much during propagation).

v ’
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4.2. 1D chain with two atoms per primitive cell

1. Equation of Motion

2n 21 2n+2
N primitive unit cell, each of which contains two different

atoms, lattice constant 2a, atom mass M > m.

atoms with mass m: ...,2n—2,2n,2n+2, ...

atoms with mass M: .. 2n—1,2n+1,2n+3,...

Displacement of each atom (with respect to equil. position):

ool osUnysUspyinse-s sl 15 Up s Unpi3see
18
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4.2 Diatomic Chain

Consider only inter. between N.N. atoms & hamornic approx.:

r d’u,,
m dtz —ﬂ(”2n+1+”2n 1 2”211)
<
d u n+
\Mﬁ_ﬂ(u2n+2 +u2n 2un+1)

S — elastic constant between atoms

2N atoms, 2N equations, the correlated motions of atoms
constitute a wave.

19
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4.2 Diatomic Chain

2. dispersion relation
uzn =Aei(2naq—a)t)

subs. into the E.O.M., we get

_ i((2n+1)ag-wt)
u,, = bBe

{ —mw’*A=ple™ +e " )B-24

| -Mo*B=ple" +e™)4-2B

< A—(2fcosqa)B =0

~

(-2 cosqa) A+(2,B )BzO

reorganize it:

20
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Condition of the existence of solutions

28 -mw® -2Bcosqa

=(
-2Bcosqa 28— Mo’

mM " —2,B(m +M)a)2 +44%sin’ qa =0

( 1 A

W’ = P {(m+M) [m +M* +2mMc0s(2qa)T>
mM | J
g | |

! = M<(m+M)+[m2+M2+2mMcos(2qa)F>
m \

J

two different w-q relations, meaning two branches of lattice

waves.
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3. First B.Z.

4.2 Diatomic Chain

w: (q) is a periodic function of ¢, with period 27/2a.

(q+8) o;(q)

reciprocal lattice vector: —=—  s— =G,

;(¢+G,)=o(q)
one can also prove:
uZn (q + Gh ) = u2n (q)

U, (q +G, ) = Uy, (q )

22
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therefor ¢ and g+ G, describe exactly the same vibration mode,
we can restrict ¢ within a peorid 7/a, i.e., a primitive reciprocal
lattice vector.

T T 2a
A symmetric choice: ——_— <¢<_—

lattice constant

first Brillouin zone
4. optical and acoustic branches

(1) extreme values —7z<2ga<nm

4
> short wavelength limit ¢ — i%

1

(© o = (ﬂj; (on +-30)~ (0 -m)f = 22

mM M

23
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i

1

(@ )= g ) M)+ 01 ) = m;

mM

M>m, &< @,

@_low frequency—acoustic

@, high frequency—optic
v' There exist a gap between the

top of acoustic branch and the

bottom of optic branch.

» A forbidden region.

v' The gap depends on S, the difference between m and M.
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4.2 Diatomic Chain

> long wavelength limit (g — 0)

acoustic branch:

a)z—nﬁ”{(m+M)—[(m+M) —2mM (1-cos(2qa) F}

1\

'

= L) 1{1—( M sinz(qa)}z

M m + M)
AmM . ,
sin <<1
when (m + M) in’(ga)

]
utilize X <<1 (1- X)l/z :1_5 %

2 2
@-= £ ‘S“‘(‘I“)‘ ﬁ aq
m+ M m+M s
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Same as simple atomic chain, linear dispersion relation in

the LWA,

optic branch:

W, = e (m +M) [(m +M)2 —2mM(1—cos(2qa))J

4.2 Diatomic Chain

if g—>0, o —>0

mM
:i(m + M) 1+{1— mM
mM (m+M)
in (’:Tj‘];)z sin’(ga)<<1 approx.
o =P (m +M){1— mM
mM (m+M)

1\

2
2 Sinz(qa)}

;sin’(ga )}

'

]

26
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: 20 mM
f 0 = —
1 q — 9 (a)+ )max 1 ILl ) L M
acoustic branch optical branch
T 28 20
q - 2 a (w— )max M (a)+ )mln m
>0 | (2),,=0 (@) = 2
7,

27
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4.2 Diatomic Chain

(2) vibration amplitude

A _ 2Bcosqa  2p-Mw’
B 2B-mw’ 2fcos(qa)

acoustic branch:

(Aj 2B-Muw’ , 28

B) _Zﬂcos(qa) “- M

1st Brillouin zone: cos(qa)>0

( A) - two N.N. atoms have displacements

always in the same direction
28
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Longwave length approx.

A
-0, | = =1
1 (B)

Two atoms in the same primitive cell have the same amplitude &

phase, i.e., their motions are exactly the same.

long wavelength acoustic wave represents the vibration of

mass center.

L . R — — — — — — — - i —— — —
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4.2 Diatomic Chain

Optical Branch:
A 2
(j _ 2Bcosqa 25 2B

B 2B-mo’ e

1st B.Z.: cos(ga)> 0

A
(Bj <0 N.N. atoms vibrate in opposite directions

3

Optical mode

30
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4.2 Diatomic Chain

long wavelength limit

q—0, (A) z—M
B +

mA+ MB =0

v' The center of mass (in the primitive cell) is stationary,
two atoms move in opposite direction (relative to the
center of mass).

31
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5. Periodic Boundary Condition

q values are within the 1st B.Z.

T

4.2 Diatomic Chain

T

N primitive cells, each contains two different atoms:

PBC:

U =Uyniy

elZNqa — 1

2qNa =27xl, [--integer

_In .
1 Na 2a q_2a

—— << —

32
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4.2 Diatomic Chain

lis an integer in — N/2 ~ N/2, N different values — # of ¢
values is also NV (equals # of primitive cells).

For each ¢, there are rwo modes (acoustic & optical).

First B.Z., 2N independent modes.
Generally, N primitive cells, P atoms in each cell.

# of q values = N (# of primitive cells)
# of vabration branches: o P

# of vabration modes: o PN

33
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4.3 Normal coordinate, Phonon

I. normal mode and collective excitation

1D atomic chain: N primitive cells, /V independent modes,

consider only N.N. coupling, under the harmonic approx.

potential: U= gZ(”nH ~u,)
1
Kkinetic: T= 5 M Z i,

Total energy of the system:

1
e MY+ 3 -u,)

34
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1 s
— | Mo, p; + ——
£ 1(91 1/

Me

Hamiltonian becomes a sum of that of NV harmonic oscillators

new coordinate and momentum —Normal Coordinate.

v Summation over / contains N terms, each of which
describes a linear Harmonic oscillator with frequency o,
v’ We establish the equivalence between the vibration of N

interacting atoms and N independent hamornicl oscillators.

Quite general conclusion, also valid for 3D crystals. s
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I1. Phonon

phonon: energy quanta in the crystal vibration.

According to the quantum theory, the energy of harmonic

oscillator is quantized as (1 )
& =|-+n, |ho,

Total energy of crystal vibration: ¢ = Z (; + n,)ha),

/

Each vibration mode's energy taks 7@, as its unit, one adds intger
times of 7@, to the system when exciting a lattice wave.

energy of the phonon

v'Each lattice wave is a mode, corresponds to a kind of phonon.
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4.4 Normal coordinate, Phonon

excite from ground state to (; + nljha), excited state, one

costs energy n,/iw, , and creat n, phonons of freqency w,.

Quasi particle: MW energy: hw
B quasi momentum (crystal momentum): p =hq

B average number of g-state phonon:

)= 1 —phonon is boson,
q)= ha, [kpT . :
e " obey Bose-Einstein Stat.

Lattice wave scattered when propagating in the crystal—
phonon-phonon scattering;

Phonon number does no conserve, it can be created or annihilated.
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4.4 Vibration of 3D lattices
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4.4 Vibration of 3D lattices

I. three-dimensional simple lattice

One-dimension (1D):

d2
d:in = ﬂ(un+1 + un—l - 2un)

Solution: U, = Ae' #5002 g pilana—ar)

E.O.M.: m

3D: suppose the motion of each atom follows the form below,

u, = A T*e)

38
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g indicates the direction where the wave propogates;

A offers the vibration amplitude and its direction
(polarization)

A/l g : longitudinal; A4 1 g: transverse

-~ i(g-R -t

substitute u,_ = Ae (2,-a1) into the E.O.M., and get 3

associated equations on A (with components Ax,Ay,Az).
equivalent to a 3x 3 matrix equations

get a 3x3 determinant

39
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is a 3rd order equation of ®° which leads to three solutions,

i.e., 3 branches of disperion relations.

All of these 3 dispersion relation curves pass through the
origin, i.e., they are all acoustic waves!

Note:

v For 3D case, the dispersion is not neccesarily isotropic in all
directions, therefore, 2D plot can only show @ - g relation on
some specific directions.

v" To reveal the complete info. of the phonon dispersion relation,

one has to adopt a contour-like plot for all g points.

40
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4.4 Vibration of 3D lattices

50
Cu

10-'2 & (radians/sec)

|
I
|
I
|
I
I
bz

(000) q-— (100) (110) (¥4%40) “—q (000) (000) q — (Y2V/2Y3)

The phonon dispersion spectra for two metals which crystallize in the
F.C.C. structure. Part (A) shows data for lcad, and part (B) for copper. Angular frequencyw
is plotted against the dimensionless vector q = (ka/7) measured from the center of the
Brillouin zone in three principal directions. For the [110] direction, the curves are ex-
tended through the Brillouin zone (B.Z.) boundary. Data for lead from Brockhouse etal,
Phys. Rev. 128, 1099 (1962). Data for copper from Svensson et al., Phys. Rev. 155, 61§
(1967), and from G. Nilsson and S. Rolandson, Phys. Rev. B.7, 2393 (1973). Data for both
materials were obtained by inelastic scattering of monochromatic neutron beams. ’
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4.4 Vibration of 3D lattices

I1. 3D compound lattice

Consider P different atoms in a primitive cell, each atom
corresponds to a E.O.M., therefore it contains P equations in a

primitive cell:

equiv. to 3P scalar equations >

3P x 3P matrix equation

is 3P-rank equation of ?having 3P roots, leading to 3P
dispersion relations:

v'3 acoustic branches, and rest 3P— 3 optical branches.

42
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4.4 Vibration of 3D lattices

I11. first Brillouin zone

qd and q + (7,, describe exactly the same vibration states, so
by using all g values within a primitive cell in reciprocal

lattice, one is capeble to discribe all possible lattice waves.

Select a symmetric region centered at g=0, with the size of a

primitive reciprocal cell 1st Brillouin zone:

b b
__l< S_l
)

43
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4.4 Vibration of 3D lattices

IV. periodic boundary condition

Lattice with /V primitive cells, the numbers of cells along a,,a,,a,
are

N,,N,,N, N=N,-N,-N,

Under periodic boundary condition:

eiNiq,-a — 1

Nga=2zl, | integer

44
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4.4 Vibration of 3D lattices

b, b, 127 127 127
— <¢;S A it

2 2 a N,-a, 2 a,

N,
_ 21 <lI; < I, can choose . values, so does ¢;.

Total number of 4 values N =N, - N, - N,, equals # of primitive

cells in the crystal.

v' A primitive cell contains P different atoms, thus there are 3P
different vibration branches, of which 3 are acoustic branches;

v" In a crystal containing /V primitive cells, there are 3PN modes
in total, of which there are 3/V acoustic, and 3/V(P-1) optical

45
modes.




