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Chapter 7 Energy Bands

7.1 Basic Assumption of Energy Band Theory
7.2 Bloch Theorem and Bloch Wave
7.3 Nearly Free Electron Approximation

7.4 Tight-binding Approximation & Wannier
Function
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Chapter 7 Energy Bands

Energy band theory, also called single electron theory
Main theoretical framework for studying the electronic

structure/motion in solids.

=

Progress in Solids State Theory }

Computational Techniques Improves
rapidly

Energy Band Calculation becomes a hot research field in
modern solid state/condensed matter physics

“Approximation theory” for many-electron system
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7.1 Basic Assumptions of Energy Band Theory

In a solid (with volume V' = I’) there exists N positively
charged ion Ze, with NZ valence electrons. 7, and R are
position vector. The fotal Hamiltonian can be written:

=30 vyt e

T Arg, |7, —rj‘

Al 1 (Ze)2

NZ N 2

DI

i=1 n=1 n

n=

3

The Theory of Everything!
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- 7’\; +V (’7,9’?1)-'- fn +Vnm(Rn’Rm)+Ven(’7;’Rn)

ee

1st, 2nd terms: kinetic & Culomb interaction of NZ electrons;
3rd & 4th terms: Kinetic & Culomb interaction of NV ions;

Sth term: Culomb interactions between electrons and ions.

Z' means partial summation 7 # j
i,j

Schrodinger's equation:

HY(7,R)=s¥(F,R)
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The Theory of Everything

R. B. Laughlin* and David Pines'*S

*Department of Physics, Stanford University, Stanford, CA 94305; fInstitute for Complex Adaptive Matter, University of California Office of the President,
Oakland, CA 94607; *Science and Technology Center for Superconductivity, University of lllinois, Urbana, IL 61801; and 5Los Alamos Neutron Science Center
Division, Los Alamos National Laboratory, Los Alamos, NM 87545

Contributed by David Pines, November 18, 1999

We discuss recent developments in our understanding of matter,  we have learned why atoms have the size they do, why chemical
broadly construed, and their implications for contemporary re-  bonds have the length and strength they do, why solid matter has
search in fundamental physics. the elastic properties it does, why some things are transparent

For experts we write

Except for light, which is easily included,

d
= == "' and possibly gravity, these missing parts
where are irrelevant to people scale phenomena.
‘o jE_:TVf B i Zf;f v Eqs. 1 and 2 are, for all practica.l
wx g w e N g g purposes, the Theory of Everything for
~ 22 P %] +J§A P EH i —HFBI' 21 our everyday world.

However, it cannot be solved accurately when the number of particles exceeds about
10. No computer existing, or that will ever exist, can break this barrier because it
IS a catastrophe of dimension.
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Exponential Wall!

NP-hard
Site number Dimension of
Hilbert Space
® O D = d?
® 0 o D = d3
L o
® ® O D =d"
B i€ S=1/2 d=2

BT d=4
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I. Adiabatic Approximation
Divide solids into electronic and ionic subsystems:

m<<mM

Born-Oppenheimer Approx.: assume that the motion of

atomic nuclei and electrons in a molecule can be separated.

Consider only the motion of electrons, and ions fixed at its
instantaneous position.

PI = ]A; +Vee(’7ial7j)+ Ven(?i’Rn)

At intermediate temperatures, ignore the effects of crystal
vibration, take R _as its equilibrium position.



o I FIREARRE 71 Basic Assumptions of Energy Band Theory

BE\IHANG UNIVERSITY

I1. Single Electron Approximation (self consistent field)

Utilize Hatree-Fock method to reduce a many-electron problem
to a single electron problem.

Use mean field to replace V,, , and assume every electron “feels”
exactly the same potential.
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n 2 ~ 1 Ze
Hi=_ﬂvz%+ve(ri)_z 5 _ R

n

total A s the sum of /V single electron Hamiltonians.
-y A,
Schrodinger Equation:

H,v(7,R)=c¥(7,R) Hatree-Fock Equation

S F Hw,(r

According to variational principle ql ”1»
&= Zei
HiWi(i:i)= 81")”1’(’71')

many electron = single electron problem :
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Feynman Diagrams R.D. Mattuck, 1976
DOUBLE BUBBLE,
¢ PAIR BUBBLE,
%; O" PARTICLES AND HOLES,
IN SYSTEM BuBBLEJ
@ ®) ©
'39 ¢
) ©

| L LS LS
“ A“I .'
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Hatree-Fock Approximation in Feynmann Diagrams

//////

‘ % | -
LL k l I fffff { | J'
, I | -
-~ “ trrvrad ) l\ ! l ,,,,,, _’
‘ k | k f /////// ; A
' l\' L S SSS J"‘ :\
I
[4 o] 2 . |
] + A X SAAA A (,,,4» A )-
L | |
|
A X (///4‘/‘"';) 1_1 == (,,,r )
| \_/ | ( Feynman Diagrams in the Amazon Jungle
k 1 1 | k
! " fN.i C;r]’_’}__i l\ t
14 C 29
(a) Bubble diagrams (b) Forward Scattel'lllg

The bubble processes can be physically interpreted as follows: a particle
enters in Kk, knocks a particle out of state 1 (|l| <kr) at time ¢, then knocks the
particle instantaneously back into 1 at time ¢, then continues freely in state k.
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I11. Periodic Potential Approximation

Suppose fotal single electron potential:
2
V(F)=v.(r)- Z

has exactly the same periodicity as the lattice:

~“4re, F— R,

V(F+R,)=V(F)

Many Electron Problem = Single Electron Problem in Periodic
Potential V(F)
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7.2 Bloch Wave

When | started to think about it, | felt that the main
problem was to explain how the electrons could sneak by
all the ions in a metal. . . . By straight Fourier analysis |
found to my delight that the wave differed from the plane
wave of free electrons only by a periodic modulation.

7.2 Bloch Wave

F. Bloch
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7.2 Bloch Wave

Single-electron potential has a lattice translation symmetry, so

the single-electron wave function has the form of Bloch wave.

I. Bloch theorem

In the single electron approximation, for periodic potential, i.e.,
V(F+R,)=V(F)

V' (7) includes all electron-electron and electron-ion interactions

for a specific electron.

14
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7.2 Bloch Wave

Single electron Schrodinger equation:
_ /R
Hy(F)=| - V' +V(F) p(F)= sy ()

Eigen function 1/1(17 ) modulated plane wave according to the
Bravais lattice:

pi(7)=e""u,(r)

in which: | u,(F+ R )=u,(F)

wavefunction in such form is called the Bloch wave.
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Proof: suppose a translation operator 7
1f(r)= f(F +R,)

potential energy term has a periodicity:
Tv(F)=V(F+R,)=V(F)

H is translational invariant:

A(F+R,)= A(F)

apply Tto H

HF+R (7 +R,)
A(F)y (7 +R,)= ATy (F)

T commutes with H, thus share the same eigenfunctions

Py ()
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7.2 Bloch Wave

Suppose the eigen state and values arey(7) and A(R ), respectively.
R )= 2R, ()
Ty(F)=y(F +R,)
w(F+R,)=AR,(F)
Normalize the wave function:

[y (F) dr = [y(F+R,) dr =1

~|A(R,) =1

17
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7.2 Bloch Wave

By applying two tanslation operators:
T(R, )T (R, W (F)=T(R, AR, W (F)
= AUR, AR, b (7)
Two successive translations is equal to one composition one R, + R,
T(R,)T(R, Jy(F)=T(R, + R, Jy(F)
= AR, + R, J(F)

the eigenvalues satisfy:

MR, +R,)=AR,)AUR,)

> [ak,)=c""

18
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7.2 Bloch Wave

y(F+R,)=AR,(r)=e""y(F)

..the wave function can be written as:

v (F)=e""u,(r)

u;(F + R, )= u;(F)

which satisfies:
Ty(F)=y(F+R,) =" u,(F+R,)

TF kR _
=elkrel nuE(r)

=" "y (F)
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I1. General Properties of the Bloch wave

1. periodically modulated plane wave

e Frsuggests that electron waves propagates as a plane wave, i.e.,
like a free particle. u (F) modulates the vibration amplitude,

making a periodic oscillation from one unit cell to another.

v ™7 plain wave factor: communal electron motion between unit
cells

v ou (17 ) describes the electron motion within the unit cell. Due to
the lattice periodicity, electrons have equal probabilities to be

found in equivalent points of each unit cell.

‘y/l?(’?_l_Rn)Z = "/’12(’7)‘2 = ‘”E(f)‘z

20
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7.2 Bloch Wave

/\,/ '\\ /‘ SR ¢ F e SR R \_/\ /"\f =N
\'ﬂb/ \\f\/ \ﬂ/ Lﬁu(

21



|r;fa| |’t T AR ?ﬁikk-‘?

\\» _,,f BEIHANG UNIVERSITY

7.2 Bloch Wave

2. electron wave vector and crystal momentum

Wave vector j labels the electron state, like a quantum number.

f(Rn)Wk(f): eiE'R"';”zz(’?)

N 7/

T( ) )quh (f) _ i(k+Gh)-Rn WI?+G,, (’7)
o "R,
l//k+Gh (l" )
k and k + Gh corresponds to exactly the same state, therefore, we

can restrict ; within the first B.Z.

hk quasi-momentum or crystal momentum, has the same physical

dimension as momentum, but nof ture momentum of Bloch electrons.

22
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7.2 Bloch Wave

i

In study of the motion of cyrstal electron under external fields, and
the interaction process with phonon and photons, 7k is formally

momentum.

3. Bloch wave is the crystal orbit of electrons, an extended
state in the whole crystal, not a localized state trapped in
the vicinity of any specific atom.

I11. periodic boundary condition and % values
Due to PBC: (7 + N,a,)=y(F)

a,(i=12,3) --lattice primitive vector

N=N,-N,-N; --total number of sites 23
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7.2 Bloch Wave

Apply the Bloch theorem:
w(F+N.a,)=e"""y(F)

eiNik-a; — 1 iN;k-a; = 2ml; [ isinteger

—_ —_ —_ —_

k =kb, +k,b,+k,b, b (i = 1,2,3) reciprocal lattice
vector

_ — — 3 3
AR =D -(bz o )= : 51-(52x5)=(2ﬂ) =(2;/t)

N VONQ,

24
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k space density of states: (2 )3
T
restrict £k within the 1st B.Z.
h. — b, N. N.
—z<k,.sb— ——<l, <
2 2 2 2

number of k-points: N =N, -N,-N,
IV. Energy Band

1. formation of energy bands

Substitute the Bloch wavefunction into single electron
Shrodinger eq., eliminate ¢*”

[_ P (@ k) + V(f)}u,; (F)= &0, ()
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7.2 Bloch Wave

wave eqation of uz(7)
eigenfunction and values are related to &
for each wave eq. of specific k, there is a infinite series of

—_ —_

solutions gl(E), gz(k)’-..,gn( ),

Bloch electron state are denoted by two quantum number %

and n, with corresponding energy and wave function:

€, (E) W i (’7)

26
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7.2 Bloch Wave

Fork and k + G,

Ve, (F)= ¥, (F)

£,k+G,)=¢,(k)
for a specific n, €, (E) is a periodic function of %, can change
within a range, and has energy upper and lower bound,
forms the so called energy band. Different n represents
different band, » is the band index. Two neigboring bands

can have a gap or some overlap.

g, (E ) (dispersion relation for Bloch electrons) is called

band structure of crystal. A
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Number of wave vectors |
energy

in the 1st B.Z. = lattice site

number N

TR 5 P
J& B8] 3B
Every single band contains
N electronic state (2/V for

spin-1/2 electrons )

0.367 0.5

28
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7.2 Bloch Wave

2.properties of energy bands

(1) periodicity |g (E): £ (E +G, )‘

£, (E ) is a periodic function of k&, with periodicity equal to

reciprocal lattice vector. In k-space, two points with distance equal

to any reciprocal lattice vector have exactly the same energy.

(2) inversion symmetry

£,(k)=¢,(-k)

W, (’7 ) =V, -k (’7 )‘

Energy band has inversion symmetry with respect to % = ( point.

[_ " (@ k) + V(f)}u,; (F)= &0, ()

29
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7.2 Bloch Wave

— k point corresponds to a Schrodinger eq. complex congugate
to that for f point, so

£.(-k)=¢,(k)
e,(-k)=¢,(k)

(3) energy bands have the same rotational symmetry as real-space
crystal

energy is real

Apply to the real space lattice a symmetric operation, potential
V(7) is intact. So the new state function has the same energy as
the old one. These new states corresponds to rotational operation

in k-space. 30
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3. Diagrammatic representation of enertgy bands

Extended zone scheme:
Plot different energy bands in

various Brillouin zone of k-space.

Reduced zone scheme:

Plot all energy bands in the
first B.Z.

Repeated zone scheme:

All f points in the whole k-space.
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7.3 Nearly Free Electron Model

Periodic potential — general properties of electron eigen energy/wavefunction

Now: weak periodic potential — effect of periodic potential to

free electrons, a good approximation for s & p electrons in metals.

Use perturbation theory to solve the Schrodinger eqs of the

electrons in periodic potential H can be devided into two

Hermitian parts, H'<<H".

v" Weak periodic potential is regarded as pertubation, and can
be treated with standard perturbation theory of quantum

mechanics. 32
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I. 1 dimensional case
1. perturbation method & nearly free electron approx.
1D: a crystal of length L=Na, i.e., N primitive cells of length a.

[_ w dzz + V(x)}w(x) = ey(x)

2m dx

Expand the potential V(x) as superpostion of plane waves

(Fourier Trans.)

27 27
V(x)=Y Ve« =V, +Y e

where, " means the partial summation (n = 0 term excluded),
a is the lattice constant. 2
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= Iy ()=

1 L —izjﬂ-nx *
— ZL V(x)e dx vV =V V =V_

mean potential energy

According to the perturbation theory, single electron Hamiltonian:

Vo

H:flo+fl'
2 2

where ﬁ0=— L dZ+V0
2m dx

H'= Z'Vne «"  __deviation of potential energy

n from mean value
34
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Compute the modified wavefunction & eigen energy

Vi (x) = V/,EO)(x)+ w,gl)(x)+ W;EZ)( x)+ e

b =0 46040+

B zeroth order: select a proper potential gauge, such that}, =0

Hy, =&y,
7
- 2m dx

0 =0

i.e.

eigenvalue & normalized wavefunction:

g = n'k* 0 _ Leikx
T am Vi = JL 35
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B 1st order perturbation:

27
——nx

' L * ' g a
o= = [ G e e
1 L —ikx ikx
=ZIO e ™ V(x)ek dx
B 2nd order perturbation:

8(2) _ Z, Hkk'
‘ E)-E),

k'

‘ 2
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1 L 1k'—k+2aﬂ-nx
=Z.“0 ;'Vne( ) dx
{=Vn, it k—k'=""n=G
a
=0, if k—k'2G

electron energy up to 2nd order perturbation modification

27.2 2
&, =—h k +Z' Zm‘V"‘

2m 2
" R —hz(k—m")
a
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i

B 1st order perturbation in wavefunction:

1)(x) Z Eo EO Vi (x)

sz 1 iy —tz—ﬂnx
=Z' h 5 e S
"Rk (k—z”") VL

electron wavefunction in 1st order perturbation:

v, (x)= (x)+Z Eo Eo v (x)

= L o (x)

VL
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27
—i—nx

2 a
where ”k(x)=1+2' mV,,e :
" hzkz—hz(k—zm)

a

one can verify:
u, (x) =u, (x + na)
u, (x) is a lattice periodic function, the modified wavefunction
obtained from perturbation theory obeys Bloch's theorem.
In the 1st-order approximated wavefunction

1
1st part: plane wave with wave vector k, i.e., ﬁe

tkx

2nd part: scattering of plane wave on periodic potentials
39
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2mV

n

) 27211 °
hWk?—h*| k-"""
a

scattering amplitude:

2
when f? = ( k — 272") sacttering amplitudes are small and
a perturbation theory works

2
when f? = (k _ 272”)

a
. nken 27n "
1.€. — k — =0 E, =&,
2m  2m a

Scattering amplitudes diverge, preceding perturbation
calculations break down, and one should resort to degenerate

perturbation method. 0
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when k=g /1=2_a

a n

corresponding to Bragg reflection.

2. degenerate perturbation — strong scattering case

k="" and k¥ =k-2"E__"7
a a a

two states with equal energy (degenerate).

zeroth-order wavefucntion is linear superposition as:

w=Ay, + By

41
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1 ikx
in which, ¥, = JLE forward plane wave,
0 1 ik x .
v, = ﬁe Bragg reflection

A,B are coefficients of linear superposition.

Substitute into Schrodinger's Eq
(fI ,+H ')//(x) = ey(x)
Left multiply v, or l//,?v* , and take integral over Jx , we arrive at
(e —&)a+V,B=0

V, A+(gl —£)B=0

42
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Nontrivial Solution:

Consider k="7" & K -""*

a a

Two states with the same energy now split into

27.2
s =e(°)i\V\=—hk +
+ k n zm

V

n
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(a)

B Gap width (forbidden band): ¢,=¢&,—&_ =2V,

Forbidden band

7.3 Nearly Free Electron Model

Second
allowed

 First
allowed

band

A

I

|

|

|

1
L

a

within gap &,, there exists no allowed electron state

B energy gap & Bragg reflection

gaps appear at k = nr

a

& k=-

nriw

a

44
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n” [
k =*— are BZ boundary of 1D lattice of constant a.
a

electrons in weak periodic potential change energy abruptly near

BZ boundary, and energy gaps show up.

1 i"”" x
W = N ‘ right moving wave
o _ 1 it lef .
4% JL e eft moving wave

At BZ boundary, k and k' states propagates in opposite directions,
and have the same amplitude and frequency, whose superposition

results in a standing wave. 45
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x"

1

V. = ﬁ(%? +yl )= \/;—L(eﬂ + e_’n:x]

distribution probability of electrons:

v o) {75

e (x)\2 oc sin’ (na” x)
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U, potential energy

Ion core a ——>1

(a)

p, probability density

Traveling wave

X

47

(b)
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for 1 ="" & ],:2_“
a n
2dsinf =nA
d=a, sing=1
niA=2a

Electrons with wave vector at BZ boundary undergo a Bragg

reflection, and the energy jumps at the BZ boundary, resulting

in an energy gap (forbidden band).

48
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(2) close to the BZ boundary

When the wave vector almost satifies Bragg reflection condition,
the diffracted wave is very strong.

setk_—(1+A) k' = 7[(1—A),then we have

=T,(1+A)£ [V, +4T2A

2 2
In which, T = ("”)
2m\_ a

. . nw
Kinetic energy of fee electron near k= —
a 49
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if A<<1, TA<<V |<T, \E

expand it up to A? term

27, \
n Vn

a_=Tn—Vn—Tn(2T"—1]A2 i 1;&
‘Vn‘ 5 :

T T
T a a 0

& =1,

when k approaches BZ boundary, i.e., A—0, &, && approach

—|V,| in a parabolic way, from both sides.

50
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PN

T
= 0 @

k

51
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v The perturbation strategy (for lattice systems in any spatial
dimensions)

1. zeroth order wave function & eigen energy

272
eigen energy g = h"k
2m
normalized R
wavefunction Vi = We V—volume of crystal

2. Perturbation Calculations

1st order modification of energy
(kH '|ky=0

52
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2nd order correction to energy:

v |2
(2)_ IEIE"
Z E}-E],

1st order correction to wavefunction:

v (F)= Z £ k"éo v;.(F)

when £° = (E -G, )2, ordinary perturbation calculations diverge.

since &; =¢&;. one should resort to degenerate perturbation theory.

53
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3. degeneracy

v' Take linear combination of k & k' states and get zeroth order

wavefunction.

v' Under the condition of k'* = (Té Gp)?, one always get:
g t

&,

V

n

Fourier components of the periodic potential
v" Eigen energy of Bloch wave undergoes a jump at k'* = (Té — E’h),z
which possibly leads to a forbidden band of width 2 ‘Vn ‘ .

v' This condition is the same as the Laue's equation, and be

satisfied at BZ boundary (where Bragg reflection occurs).
54
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I1. Three-Dimensional (3D) case

Energy levels of quantum states form quasi-continuous spetra,

constitutes a series of energy bands, energy gap between bands is

called the forbidden band.

v" 3D crystal band has periodicity and inversion symmetry.
v' # of quantum states contained in each band is equal to /V, and
can be increased as 2/V if electronic spin is taken into

consideration.

Main difference: 3D cases, different energy bands are not

necessarily separated by a gap, but could share some overlap.
55
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7.4 Tight-binding Approximation

7.4 Tight-binding Approximation

v" Free atoms has strong binding potential to its electrons.
v" When atoms approach each other, treat the interatomic interaction as
perturbation, what will happen?

v" Suitable for 3d electrons in transition metals & inner electrons in solids.

I. Wavefunction in tight-binding model (linear combination of
atomic orbits)

Position vector of m-th atom is R _, regard this atom as an isolated one,
and the electrons moving around is in a bound state (an atomic orbit):

(pi (?_Rm) >0
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2m

2
|:_V2 +Vat(’7_Rm )i|¢i(’7_Rm)= 81'(0"(?_1?’”)

(17 — Rm) : atomic potential for m-z2 atom.

Rm) are electronic energy level & wavefunction.

€iy @, (’7 -
In a crystal consists of NV atoms, there exist /V different atomic
orbits @.(7 — R, ) with energy of &, .

These atomic orbits constitute a N-fold degenerate system:

R) m=12,-,N

S57

N-fold degeneracy of energy level ¢;: ¢, (17 —
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7.4 Tight-binding Approximation

Tight-binding Approximation: Single electron wavefunction in
the crystal can be regarded as linear combination of /V

degenerate atomic wavefunction, l.e.,

N
Approximately: | v, (F)=>a,o, (F-R,)
m=1

Jo:(F R )p,(F-R, ) =5,

@, is normalized at any lattice site.

@, has little overlap with that on a different lattice site =>

approximately orthogonal to each other. 58
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7.4 Tight-binding Approximation

In the vicinity of every lattice site, the atomic orbit is y; (17 )
--Linear Combination of Atomic Orbitals (LCAO), i.e., the
communal orbit all through the crystal is a linear combination

of atomic orbits ¢, (77 — Rm)

/g (l7 ) obeys Bloch's theorem:

ik-R,

1
=—e
JN

99
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7.4 Tight-binding Approximation
check it

V/E(F-I_Rn):

satisfy Bloch's theorem

60
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7.4 Tight-binding Approximation

I1. Energy Calculation & Formation of Energy Bands

Single electron Schrodinger eq in a crystal:

-1 V)=o)

V(F)

lattice peroidic potential:

V()= 2~ R.)

set AV(7,R,)=V(7)-V, (F-R,)

Difference btw latt. potential and atomic potential of position R .

61
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7.4 Tight-binding Approximation
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7.4 Tight-binding Approximation

[_fzvz +V,(F-R,)+AV(F,R )}w(r) ey(F)

left multiply ¢; (17 ) and take integration, ¢.(F —R )'s are
orthonormal to each other.
63
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7.4 Tight-binding Approximation
e+ [ 9iGL0AV G 0,7, 0)d7
+ @@ 0)AV(# R,) o(# R,,)e* Rn d = 0
5|

let:  J(0)= j o (F.0)AV(7,0)p, (7,0)d7

J, =~ ¢ F V(7 R, ), (F - R, )dF

overlap integral.

It is nonzero when atomic orbits with distance Rm have overlap.

e=¢-J0)-> J,e" "
R

64
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In the tight-binding approximation, consider only the N.N.

lap: —
overiap g(E): g —J(O)—ZJmeik'Rm

1D case: 8(E)= E; —J(O)— 2J,coska
Energy levels expand to a band of width4.J,

Simple Cubic: NN sites are (i a,0,0) (0,£a,0) (0,0,ia)
e(k)=¢-J, —JmZeiE'Rm

=g —J,—J K ik | =ik ) - (eikya 4 g )+ (eikza g )J
=&, —J,—2J, (cos k.a+cosk a+cos kza)

Energy level expands as energy band of width e —¢& . 65
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v N identical atoms (when are far apart) have their own energy level
¢; and @ (7) , 1-electron states are N-fold degenerate.
v" When the atoms approach each other and the electron obits start
to develop some overlap, N-fold degeneracy is removed and a

energy band is formed which contains /V inequivalent extensive

states (labelled by k).

Vir) Energy levels
r (Spacing)!

e P
Bl Ty Bands,

each
»  with
N values
of k

n=l-————— —

(a) N-fold (b)
degenerate
levels
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7.4 Tight-binding Approximation

I11. Wannier function

Nearly free electron approximation:
modulated plane wave = Bloch wave
Tight-binding approximation:

linear combination of free atomic orbits = Bloch wave

The wavefunction reflects local properties—Wannier function

Bloch wave is a periodic function in k space, which can be

expanded by F.T. in direct space
)=y TR )"

n is band index, and a_ (17 — Rm) is Wannier function. 57
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_ 1 y
a ( ) T ; i nk (l"
1. locality

( ) Z —ik-R,, =
an nk
k
—ik-R,, lk r (
Z e \F
k

Z k(rR)

k

o a\»—

.

u . (7) is alattice periodic function, a, (17 - R, )is only
dependent on (7 — R ). 68
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7.4 Tight-binding Approximation

Change to integrate over k ,set7 = R, , then

BB ) i e R )

Quanlitatively: when ‘R, = Rm‘ is large, exponential function
oscillates strongly and the integration becomes small, showing that

Wannier function is centered at R , and decay with distances.

2. orthogonality

Bloch waves with different » or k are orthogonal:

jl//nk )dl" o 5nm5];]}
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7.4 Tight-binding Approximation

Ja.(r =R )u,(F~ R ar
O AN
1« #@-2

N2 e,

= 5nn'5m o

Wannier functions in different bands or centered at different sites
are orthogonal to each other.
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