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Chapter 7 Energy Bands

7.1 Basic Assumption of Energy Band Theory
7.2 Bloch Theorem and Bloch Wave
7.3 Nearly Free Electron Approximation
7.4 Tight-binding Approximation & Wannier 
Function
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Energy band theory, also called single electron theory

Main theoretical framework for studying the electronic 

structure/motion in solids.

Progress in Solids State Theory

Computational Techniques Improves 
rapidly

Energy Band Calculation becomes a hot research field in 
modern solid state/condensed matter physics 

“Approximation theory”for many-electron system

Chapter 7 Energy Bands
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7.1  Basic Assumptions of Energy Band Theory

In a solid (with volume ) there exists N positively 

charged ion Ze, with NZ valence electrons. and      are 

position vector. The total Hamiltonian can be written:
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7.1  Basic Assumptions of Energy Band Theory

The Theory of Everything! 



4

( ) ( ) ( )nienmnnmnjieee RrVRRVTrrVT
!!!!!! ,,ˆ,ˆ ++++=

1st, 2nd terms: kinetic & Culomb interaction of NZ electrons;

3rd & 4th terms: kinetic & Culomb interaction of N ions;

5th term: Culomb interactions between electrons and ions.

means partial summationå
ji ,
' i j¹

Schrödinger's equation：

( ) ( )RrΨRrΨH
!!!! ,,ˆ e=

7.1  Basic Assumptions of Energy Band Theory



7.1  Basic Assumptions of Energy Band Theory

Except for light, which is easily included, 
and possibly gravity, these missing parts 
are irrelevant to people scale phenomena. 
Eqs. 1 and 2 are, for all practical 
purposes, the Theory of Everything for 
our everyday world.

However, it cannot be solved accurately when the number of particles exceeds about 
10. No computer existing, or that will ever exist, can break this barrier because it 
is a catastrophe of dimension.



精确对角化的指数墙困难

Exponential Wall!
NP-hard

Site number Dimension of 
Hilbert Space

D	=	d2

D	=	d3

L

D	=	dL

Heisenberg Model

7.1  Basic Assumptions of Energy Band Theory

自旋 S=1/2 d=2

电子 d=4
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I. Adiabatic Approximation
Divide solids into electronic and ionic subsystems:

Mm <<

Born-Oppenheimer Approx.: assume that the motion of 

atomic nuclei and electrons in a molecule can be separated.

Consider only the motion of electrons, and ions fixed at its 
instantaneous position.

( ) ( )nienjieee RrVrrVTH
!!!! ,,ˆˆ ++=

At intermediate temperatures, ignore the effects of crystal 
vibration, take      as its equilibrium position. nR

!

7.1  Basic Assumptions of Energy Band Theory
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II. Single Electron Approximation (self consistent field)

Utilize Hatree-Fock method to reduce a many-electron problem 
to a single electron problem.

Use mean field to replace , and assume every electron “feels” 
exactly the same potential.
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7.1  Basic Assumptions of Energy Band Theory
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Schrödinger Equation：

( ) ( )RrεΨRrΨHe

!!!! ,,ˆ =

( ) ( )Õ=
i

iii rrrΨ !
"
!

"
! y,,1

å=
i

iεε

( ) ( )iiiiii rrH !! yey =

many electron Þ single electron problem

total is the sum of N single electron Hamiltonians.eĤ

According to variational principle

7.1  Basic Assumptions of Energy Band Theory

Hatree-Fock Equation



Single particle approximation: Bare electron churns the Fermi sea.

Feynman Diagrams R.D. Mattuck, 1976

7.1  Basic Assumptions of Energy Band Theory



Hatree-Fock Approximation in Feynmann Diagrams

“Forward Scattering”

7.1  Basic Assumptions of Energy Band Theory
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III. Periodic Potential Approximation

Suppose total single electron potential:
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has exactly the same periodicity as the lattice:

( ) ( )rVRrV n
!!! =+

Many Electron Problem Þ Single Electron Problem in Periodic 
Potential ( )rV !
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7.1  Basic Assumptions of Energy Band Theory



When I started to think about it, I felt that the main 
problem was to explain how the electrons could sneak by 
all the ions in a metal. . . . By straight Fourier analysis I 
found to my delight that the wave differed from the plane 
wave of free electrons only by a periodic modulation.

F. Bloch

7.2 Bloch Wave

7.2 Bloch Wave
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7.2 Bloch Wave
Single-electron potential has a lattice translation symmetry, so 

the single-electron wave function has the form of Bloch wave.

I. Bloch theorem
In the single electron approximation, for periodic potential, i.e.,

( ) ( )rVRrV n
!!! =+

includes all electron-electron and electron-ion interactions 

for a specific electron.

( )rV !

7.2 Bloch Wave
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( ) ( ) ( ) ( )rrrV
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Eigen function modulated plane wave according to the
Bravais lattice:

( )r!y

( ) ( )ruer k
rki

k
!!

!

!!

!
×=y

( ) ( )ruRru knk
!!!

!! =+in which：

wavefunction in such form is called the Bloch wave.

Single electron Schrödinger equation:

7.2 Bloch Wave
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Proof: suppose a translation operator T̂
( ) ( )nRrfrfT

!!! +=ˆ

potential energy term has a periodicity:

( ) ( ) ( )rVRrVrVT n
!!!! =+=ˆ

is translational invariant:Ĥ
( ) ( )rHRrH n

!!! ˆˆ =+

( ) ( ) ( )nn RrRrHrHT
!!!!! ++= yy ˆˆˆ

( ) ( ) ( )rTHRrrH n
!!!! yy ˆˆˆ =+=

apply     to T̂ Ĥ

commutes with     , thus share the same eigenfunctionsT̂ Ĥ

7.2 Bloch Wave
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Suppose the eigen state and values are          and           , respectively. ( )r!y ( )nR
!

l

( ) ( ) ( )rRrRT nn
!!!!

yly =)(ˆ

( ) ( )nRrrT
!!! +=yyˆ

( ) ( ) ( )rRRr nn
!!!! yly =+

Normalize the wave function:

( ) ( ) 1dd
22

=+= òò rRrrr n
!!!!! yy

( ) 12 =\ nR
!

l

7.2 Bloch Wave
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By applying two tanslation operators：

( ) ( ) ( ) ( ) ( ) ( )rRRTrRTRT mnmn
!!!!!!

yly ˆˆˆ =

( ) ( ) ( )rRR mn
!!!

yll=

Two successive translations is equal to one composition one mn RR
!!

+

( ) ( ) ( ) ( ) ( )rRRTrRTRT mnmn
!!!!!!

yy += ˆˆˆ

( ) ( )rRR mn
!!!

yl +=

the eigenvalues satisfy：

( ) ( ) ( )mnmn RRRR
!!!!

lll =+

( ) nRki
n eR

!!! ×=l

7.2 Bloch Wave
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( ) ( ) ( ) ( )rerRRr nRki
nn

!!!!! !!

yyly ×==+

\the wave function can be written as：

which satisfies：

( ) ( )ruer k
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!!!

!! =+

( ) ( )nRrrT
!!! +=yyˆ ( )nk
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7.2 Bloch Wave
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II. General Properties of the Bloch wave
1. periodically modulated plane wave

suggests that electron waves propagates as a plane wave, i.e., 

like a free particle. modulates the vibration amplitude, 

making a periodic oscillation from one unit cell to another.

rkie
!!×

( )ruk
!

!

ü plain wave factor: communal electron motion between unit 
cells

rkie
!!×

ü describes the electron motion within the unit cell. Due to 

the lattice periodicity, electrons have equal probabilities to be 

found in equivalent points of each unit cell.

( )ruk
!

!

( ) ( ) ( ) 222 rurRr kknk
!!!!

!!! ==+ yy

7.2 Bloch Wave
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7.2 Bloch Wave
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2. electron wave vector and crystal momentum

( ) ( ) ( )rerRT k
Rki

kn
n !!!
!

!!

! yy ×=ˆ

Wave vector     labels the electron state, like a quantum number.k
!

( ) ( ) ( )rerRT
h
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!!

!!!

!!
+
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+ = yy )(ˆ
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!!

!!

+
×= y

and       corresponds to exactly the same state, therefore, we 

can restrict     within the first B.Z.

k
!

hGk
!!

+

k
!

quasi-momentum or crystal momentum, has the same physical 

dimension as momentum, but not ture momentum of Bloch electrons.

k
!
"

7.2 Bloch Wave
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In study of the motion of cyrstal electron under external fields, and 

the interaction process with phonon and photons,       is formally 

momentum.

k
!
"

3. Bloch wave is the crystal orbit of electrons, an extended 
state in the whole crystal, not a localized state trapped in 
the vicinity of any specific atom.

III. periodic boundary condition and     values k
!

Due to PBC： ( ) ( )raNr ii
!!! yy =+

( )3,2,1=iai
!

--lattice primitive vector

321 NNNN ××= --total number of sites

7.2 Bloch Wave
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Apply the Bloch theorem：

( ) ( )reaNr ii akiN
ii

!!! !!

yy ×=+

332211 bkbkbkk
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++= ( )3,2,1=ibi
!

reciprocal lattice
vector

every   point occupies volume (in k-space):k
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space density of states：k
!

( )32p
V

restrict      within the 1st B.Z.k
!

22
i

i
i bkb

!
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!

£<- 22
i

i
i NlN

£<-

number of k-points： 321 NNNN ××=

IV. Energy Band
1. formation of energy bands
Substitute the Bloch wavefunction into single electron 
Shrödinger eq., eliminate rkie

!!×

( ) ( ) ( ) ( )rururVki
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7.2 Bloch Wave
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wave eqation of 

eigenfunction and values are related to

for each wave eq. of specific    , there is a infinite series of 

solutions 

k
!

k
!

( ) ( ) ( )!"!
""

,,,, 21 kkk neee

Bloch electron state are denoted by two quantum number     

and n, with corresponding energy and wave function:
k
!

( )kn
!

e ( )rkn
!

!y

7.2 Bloch Wave
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For andk
!

hGk
!!

+
( ) ( )rr knGkn h

!!
!!!
,, yy =+

( ) ( )kGk nhn

!!!
ee =+

for a specific n,    is a periodic function of   , can change 

within a range, and has energy upper and lower bound, 

forms the so called energy band. Different n represents 

different band, n is the band index. Two neigboring bands 

can have a gap or some overlap.

( )kn
!

e k
!

(dispersion relation for Bloch electrons) is called 

band structure of crystal.

( )kn
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7.2 Bloch Wave
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Number of wave vectors 

in the 1st B.Z. = lattice site 

number N

k
!

Every single band contains 

N electronic state (2N for 

spin-1/2 electrons )

energy

7.2 Bloch Wave
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2.properties of energy bands
(1) periodicity ( ) ( )hnn Gkk

!!!
+= ee

(2) inversion symmetry

( ) ( )kk nn

!!
-= ee ( ) ( )rr knkn

!!
!!

-
* = ,, yy

Energy band has inversion symmetry with respect to            point. 0=k
!

is a periodic function of k, with periodicity equal to 

reciprocal lattice vector. In k-space, two points with distance equal 

to any reciprocal lattice vector have exactly the same energy.
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7.2 Bloch Wave
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point corresponds to a Schrodinger eq. complex congugate 
to that for     point, sok

!
k
!

-

( ) ( )kk nn

!! *=- ee
energy is real

( ) ( )kk nn

!!
ee =-

(3) energy bands have the same rotational symmetry as real-space 
crystal

Apply to the real space lattice a symmetric operation, potential

is intact. So the new state function has the same energy as 

the old one. These new states corresponds to rotational operation 

in k-space.

( )rV !

7.2 Bloch Wave
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3. Diagrammatic representation of enertgy bands 

Reduced zone scheme：

Plot all energy bands in the 

first B.Z.

Repeated zone scheme:

All points in the whole k-space.k
!

Extended zone scheme：

Plot different energy bands in 

various Brillouin zone of k-space.

7.2 Bloch Wave
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7.3  Nearly Free Electron Model

Use perturbation theory to solve the Schrödinger eqs of the

electrons in periodic potential——H can be devided into two

Hermitian parts, H¢<<H0.

ü Weak periodic potential is regarded as pertubation, and can

be treated with standard perturbation theory of quantum

mechanics.

Periodic potential → general properties of electron eigen energy/wavefunction

Now: weak periodic potential → effect of periodic potential to 

free electrons, a good approximation for s & p electrons in metals.

7.3  Nearly Free Electron Model
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I. 1 dimensional case

1D: a crystal of length L=Na, i.e., N primitive cells of length a.
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1. perturbation method & nearly free electron approx.

Expand the potential as superpostion of plane waves 

(Fourier Trans.)

( )xV

where, ¢ means the partial summation (n = 0 term excluded), 
a is the lattice constant.

7.3  Nearly Free Electron Model
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( )0 0

1 d
L

V V x x V
L

= =ò ——mean potential energy

( )
2

0

1 d
L i nx

a
nV V x e x

L

p
-
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According to the perturbation theory, single electron Hamiltonian:

'ˆˆˆ
0 HHH +=

02

22

0 d
d

2
ˆ V

xm
H +-=

!

å=
n

nx
a
i

neVH
p2

''ˆ

where

-- deviation of potential energy 
from mean value

nn VV -=*= nn VV

7.3  Nearly Free Electron Model



35

Compute the modified wavefunction & eigen energy

( ) ( )( ) ( )( ) ( )( ) !+++= xxxx kkkk
210 yyyy

( ) ( ) ( )
!+++= 210

kkkk eeee

n zeroth order：select a proper potential gauge, such that 00 =V
000

0 kkkH yey =

( ) ( ) ( )000
2

22

d
d

2 kkkxm
yey =-

!
i.e.

eigenvalue & normalized wavefunction:

m
k

k 2

22
0 !
=e ikx

k e
L
10 =y

7.3  Nearly Free Electron Model
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n 1st order perturbation：
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electron energy up to 2nd order perturbation modification

7.3  Nearly Free Electron Model
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n1st order perturbation in wavefunction：
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electron wavefunction in 1st order perturbation：

( )xue
L k

ikx1
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7.3  Nearly Free Electron Model



39

( ) å
÷
ø
ö

ç
è
æ --

+=
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n
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n
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a
nkk

emVxu 2
222

2

2
2'1

p

p

!!

one can verify:
( ) ( )naxuxu kk +=

is a lattice periodic function, the modified wavefunction 

obtained from perturbation theory obeys Bloch's theorem.

( )xuk

1st part: plane wave with wave vector k, i.e., 
ikxe

L
1

2nd part: scattering of plane wave on periodic potentials

where

In the 1st-order approximated wavefunction

7.3  Nearly Free Electron Model
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2
222 2
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ø
ö

ç
è
æ --

a
nkk

mVn
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!!

when
2

2 2
÷
ø
ö

ç
è
æ -=

a
nkk p

Scattering amplitudes diverge, preceding perturbation 
calculations break down, and one should resort to degenerate 
perturbation method.

22 2 2 2
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- - =æ öç ÷

è ø
! ! 0
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2
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a
nkk p sacttering amplitudes are small and 

perturbation theory works

scattering amplitude:

7.3  Nearly Free Electron Model
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2. degenerate perturbation — strong scattering case

a
nk p

=
a
n

a
nkk pp

-=-=
2'and

two states with equal energy (degenerate). 

zeroth-order wavefucntion is linear superposition as：

00
'kk BA yyy +=

when
a
nk p

=
n
a2

=l

——corresponding to Bragg reflection.

7.3  Nearly Free Electron Model
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xik
k e

L
'

'

10 =y ——Bragg reflection

ikx
k e

L
10 =y ——forward plane wave, in which，

A,B are coefficients of linear superposition.

Substitute into Schrödinger's Eq 

( ) ( ) ( )xxHH eyy =+ 'ˆˆ
0

Left multiply       or  , and take integral over       , we arrive at*0
ky

*0
'ky xd

( ) 00 =+- BVA nk ee

( ) 00
' =-+ BAV kn ee

7.3  Nearly Free Electron Model
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Nontrivial Solution:

00

0

'

=
-

-
ee

ee

kn

nk

V
V

Consider
a
nk p

=
a
nk p

-'&

Two states with the same energy now split into 

( )
nnk V

m
kV ±=±=± 2

22
0 !ee

7.3  Nearly Free Electron Model
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n Gap width (forbidden band)： ng V2=-= -+ eee

within gap eg, there exists no allowed electron state

n energy gap & Bragg reflection

gaps appear at                  &
a
nk p

=
a
nk p

-='

7.3  Nearly Free Electron Model



45

electrons in weak periodic potential change energy abruptly near 

BZ boundary, and energy gaps show up.

a
nk p

±= are BZ boundary of 1D lattice of constant a.

x
a
ni

k e
L

p

y 10 = ——right moving wave

x
a
ni

k e
L

p

y
-

=
10

' ——left moving wave

At BZ boundary, k and k' states propagates in opposite directions, 

and have the same amplitude and frequency, whose superposition 

results in a standing wave.

7.3  Nearly Free Electron Model
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( )'0 01 1
2 2

n ni x i x
a a

k k
e e

L

p p

y y y
-

±

æ ö
= + = ±ç ÷

è ø

distribution probability of electrons：

( ) ÷
ø
ö

ç
è
æµ+ x
a
nx py 22 cos

( ) ÷
ø
ö

ç
è
æµ- x
a
nx py 22 sin

7.3  Nearly Free Electron Model
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7.3  Nearly Free Electron Model
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Electrons with wave vector at BZ boundary undergo a Bragg 

reflection, and the energy jumps at the BZ boundary, resulting 

in an energy gap (forbidden band).

lq nd =sin2

a
nk p

=
n
a2

=l

1sin, == qad

an 2=l

for &

7.3  Nearly Free Electron Model



49

(2) close to the BZ boundary

When the wave vector almost satifies Bragg reflection condition, 
the diffracted wave is very strong.

( )D+= 1
a
nk p ( )D--= 1'

a
nk pset ,                              , then we have

( ) 2222 41 D+±D+=± nnn TVTe

——kinetic energy of fee electron near 
a
nk p

=

22

2 ÷
ø
ö

ç
è
æ=
a
n

m
Tn

p!In which,

7.3  Nearly Free Electron Model
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1<<D nnn TVT <<<Dif  ,

expand it up to D2 term

221 D÷÷
ø

ö
çç
è

æ
+++=+

n

n
nnn V

TTVTe

212
D÷÷
ø

ö
çç
è

æ
---=-

n

n
nnn V
TTVTe

when k approaches BZ boundary, i.e., D→0, e+ &e- approach     

and            in a parabolic way, from both sides.nn VT + nn VT -

7.3  Nearly Free Electron Model
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7.3  Nearly Free Electron Model
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ü The perturbation strategy (for lattice systems in any spatial 
dimensions) 

1. zeroth order wave function & eigen energy

eigen energy
m
k

k 2

22
0 !
" =e

rki
k e

V
!!

!
×=

10ynormalized 
wavefunction V—volume of crystal

2. Perturbation Calculations

1st order modification of energy
0' =ñá kHk

!!

7.3  Nearly Free Electron Model
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2nd order correction to energy:

( ) å -
=

'
0
'

0

2'
'2 '

k kk

kk
k EE

H
! !!

!!

!e

1st order correction to wavefunction:

( ) ( ) ( )r
EE

Hr k
kk

kk

k
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!
0
'0

'
0

'
'

'

1 ' yy
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when , ordinary perturbation calculations diverge. ( )22'
hGkk
!!!

-=

0
'

0
kk
!! ee = one should resort to degenerate perturbation theory.   since

7.3  Nearly Free Electron Model
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3. degeneracy
ü Take linear combination of     & states and get zeroth order 

wavefunction.

ü Under the condition of , one always get:

k
!

'k
!

nk V±=±
0
!ee

Vn ——Fourier components of the periodic potential 

ü Eigen energy of Bloch wave undergoes a jump at ,                           

which possibly leads to a forbidden band of width . 

ü This condition is the same as the Laue's equation, and be 

satisfied at BZ boundary (where Bragg reflection occurs).

2 nV

7.3  Nearly Free Electron Model
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Energy levels of quantum states form quasi-continuous spetra, 

constitutes a series of energy bands, energy gap between bands is 

called the forbidden band.

ü 3D crystal band has periodicity and inversion symmetry. 

ü # of quantum states contained in each band is equal to N, and 
can be increased as 2N if electronic spin is taken into 
consideration.

Main difference: 3D cases, different energy bands are not 

necessarily separated by a gap, but could share some overlap.

II. Three-Dimensional (3D) case

7.3  Nearly Free Electron Model
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7.4  Tight-binding Approximation
ü Free atoms has strong binding potential to its electrons.

ü When atoms approach each other, treat the interatomic interaction as

perturbation, what will happen?

ü Suitable for 3d electrons in transition metals & inner electrons in solids.

I. Wavefunction in tight-binding model (linear combination of 
atomic orbits)

Position vector of m-th atom is      , regard this atom as an isolated one, 
and the electrons moving around is in a bound state (an atomic orbit):

7.4  Tight-binding Approximation

mR
!

)( mi Rr
!!

-j
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( ) ( ) ( )miimim RrRrRrV
m

!!!!!!"
-=-ú

û

ù
ê
ë

é
-+Ñ- jejat

2
2

2

( )mRrV
!! -at : atomic potential for m-th atom.

In a crystal consists of N atoms, there exist N different atomic 

orbits                    with energy of     . ( )mi Rr
!! -j ie

,                    are electronic energy level & wavefunction.ie ( )mi Rr
!! -j

These atomic orbits constitute a N-fold degenerate system:

N-fold degeneracy of energy level ：ie ( )mi Rr
!! -j Nm ,,2,1 !=

7.4  Tight-binding Approximation
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Tight-binding Approximation: Single electron wavefunction in 

the crystal can be regarded as linear combination of N 

degenerate atomic wavefunction, i.e.,

( ) ( )å
=

-=
N

m
mimk Rrar

1

!!!
! jy

( ) ( )ò =--*
nmmini rRrRr djj !!!!! d

Approximately:

is normalized at any lattice site.

has little overlap with that on a different lattice site => 

approximately orthogonal to each other. 

ij

ij

7.4  Tight-binding Approximation
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In the vicinity of every lattice site, the atomic orbit is

--Linear Combination of Atomic Orbitals (LCAO), i.e., the 

communal orbit all through the crystal is a linear combination 

of atomic orbits

( )rk
!

!y

( )mi Rr
!! -j

obeys Bloch's theorem:( )rk
!

!y

mRki
m e

N
a

!!
×=

1

( ) ( )å
=

× -=
N

m
mi

Rki
k Rre

N
r m

1

1 !!! !!

! jy
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m
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R
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!!
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——satisfy Bloch's theorem

check it 

7.4  Tight-binding Approximation
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II. Energy Calculation & Formation of Energy Bands
Single electron Schrödinger eq in a crystal：

( ) ( ) ( )rrrV
m

!!!" eyy =ú
û

ù
ê
ë

é
+Ñ- 2

2

2

——lattice peroidic potential：( )rV !

( ) ( )å
=

-=
N

m
mRrVrV

1
at

!!!

Difference btw latt. potential and atomic potential of position      . mR
!

( ) ( ) ( )mm RrVrVRrV
!!!!! --=D at,set
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( )am 1- ( )am 1+( )am 2- ( )am 2+

( ) ( )maxVxV -- at

ma

( )maxV -at

( )maxV -at( )xV

7.4  Tight-binding Approximation
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left multiply and take integration,                's are 
orthonormal to each other.
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( ) ( ) ( ) ( ) rrrVrJ ii
!!!! d0,0,0,0 ò D-= * jjlet：

( ) ( ) ( ) rRrRrVrJ mimim
!!!!!! d, -D-= ò * jj

—— overlap integral.

It is nonzero when atomic orbits with distance       have overlap.
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In the tight-binding approximation, consider only the N.N. 
overlap:

( ) ( ) å ×--=
nn

Rki
mi

meJJk
,

0
!!!

ee

1D case: ( ) ( ) kaJJk i cos20 1--= ee
!

Energy levels expand to a band of width 14J

Simple Cubic: NN sites are ( )0,0,a± )0,,0( a± ( )a±,0,0
( ) å ×--=

nn

Rki
mi

meJJk
,

0

!!!
ee

( ) ( ) ( )[ ]aikaikaikaikaikaik
i

zzyyxx eeeeeeJJ --- +++++--= 10e

( )akakakJJ zyxi coscoscos2 10 ++--= e

Energy level expands as energy band of width max mine e-
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ü N identical atoms (when are far apart) have their own energy level 

and            , 1-electron states are N-fold degenerate. 

ü When the atoms approach each other and the electron obits start 

to develop some overlap, N-fold  degeneracy is removed and a 

energy band is formed which contains N inequivalent extensive 

states (labelled by k).  

ie )(i r
!j

7.4  Tight-binding Approximation
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III. Wannier function
Nearly free electron approximation:

modulated plane wave Þ Bloch wave 

Tight-binding approximation:

linear combination of free atomic orbits Þ Bloch wave

The wavefunction reflects local properties—Wannier function

Bloch wave is a periodic function in k space, which can be 

expanded by F.T. in direct space:

( ) ( )å ×-=
m

Rki
mnkn

meRra
N

r
!!

!

!!! 1y

n is band index, and is Wannier function.( )mn Rra
!! -
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is a lattice periodic function， is only 
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Change to integrate over , set , thenk
!

lRr
!! =

( )
( )

( )lkn
RRki

mln RuekV
N

RRa ml
!!!!

!

!!!
)(3

3 d
2

1 -×ò=-
p

Quanlitatively: when is large, exponential function 

oscillates strongly and the integration becomes small, showing that 

Wannier function is centered at     , and decay with distances.

ml RR
!!

-

mR
!

2. orthogonality

Bloch waves with different n or k are orthogonal：

( ) ( ) '' d kknmkmkn rrr !!!!
!!! ddyy =ò *
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( ) ( ) rRraRra lnmn
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Wannier functions in different bands or centered at different sites
are orthogonal to each other.
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