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8.1 Semiclassical Motion of Electrons

I. Average velocity in a crystal

Consider a electron eigen state ) -

Electron has no fixed velocity, but has an average value
(ry_ 1l o« _
Yy (k)= ;I%:;P W,z dr
p=—ihV

due to Bloch theorem:

Wk (’7 ) =" U, (’7 )
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v (E) = lj u, (ﬁ + hl?)un,;df
m
u . (17 ) satisfies:

_ i(v +ik) + V(?)}un,; (F)=¢,(K)u, (F)

(b +1k) +V(F) |u, () = ¢, Goyu, (F)

2m

n —\2
FIE — (p;’ik) +V(l7)
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Az; nl}(’?)=g"(lz)unl€ (’7)

[/
take V; =% :

%(IA’ + 1 Yo (F)+ H LV g (F)
=V, (0)lu (7)+ &, (k)V ;. (F)

left multiply u, (17 ), and take integral over 7 :

he o N
;Iun,;(l’)(p+hk)unﬁ(r)dr +I”nk(r)H;;V;;”n,;(l’)dl”
- V,;en(l?)j ”:E(f)”nE(F)df+5n(E)_“”:E(’7)VE”nE(’7)d’7
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Hamiltonian is a Hermitian operator, the second terms cancel
oy 1 _
v, (k)= Vi, (k

Quantum mechenical wave package, a Bloch wave.
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Kind Reminder: phase and group velocities

phase velocity: the rate at which the phase of the wave propagates
in space, for a pure lattice wave with specific frequency o and
lattice vector ¢

w A
Up__ 'Up:—-

group velocity: describe the speed of the envelope of the wave

packet (given a small range of ¢q, such that the envelope does not
distort too much durlng propagatlon)
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Bloch wave with vectors near f (in the range of Af%)

constitutes a wave packet j, whose group velocity is:

-V, o(F) o(F)

frequency

use g(E): hw(l?) , the velocity of Bloch electron is:

v =;1VE8(E)|

B velocity y5is perpendicular to the isoenergy surface in % space

When the isosurface is not a sphere, j; is generally not parallel to £.

7
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free electrons:

s_P _Tk
m m
vock vilk

B Average velocity of crystal electron

depends on ¢, (E) and £.

8.1 Semiclassical Theory of Electron Motion

e(k)=e(-k)  v(k)=-v(-k)

I1. Semiclassical model of electron motion
Response of crystal electron to external fields—treated classically

Electron state in periodic lattice—quantum mechanical way (in

terms of energy band theory). 8
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Bloch electron in an external force f

The electron energy change equals the work external force
does in an unit time:  § g(];) _

a7
dek) _g g(k)——hv dk
dt dt

dk . ~ . dk
hv——f ::> f—ha

The changing ratio of k is proportional to external force f,

and has the same direction.

v" In a similar form as Newton's second law, but with only

external forces f .
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X
3 -

hk quasi momentum v Electron in an external electric &
magnetic fields

09K = (1) o5, (R)x B(f,tj

I11. Acceleration and Effective Mass

1. Acceleration

= _dilo a1y
= [thg(k)} h[ AVke(k)dt}

dt dt dk

1 N
= h—zV,;V,;f;(k)- f

1 d’¢
1D case: a=——-
h* dk* s

10
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2. Effective mass

1D:
1 d’e .
a=— - =ma
h* dk’ J
hZ
 d’e/dk?
3D:
1 _
i= V. V.elk) f
(a ) (F )
in a tensor form: a =( 1 ) F
y m* y
2 ) I

11
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1 10%g,(k)

= I, J=X, ), T
m* "2 ok;ok S5

[ 0% O’e o’c )
ok> ok ok, ok ok,
1 1| 0% 0'e o’e
m' n|okok, ok  Ok,ok,
O’ O’ O’
\ Ok, Ok, Ok ok,  Ok!

Diagonal terms along the principal axes:

1 1 0%,(k)
m. 1 ok’ aA=X,),3

12
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v’ Effective mass is a rank-2 tensor (a matrix), generally the
acceleration of electrons is not neccesarily parallel to external
forces. Due to the fact that electrons not only “feels” external

forces, but are also affected by periodic potentials.

v’ Effective mass includes the effects of crystal potentials, leaving
the acceleration of electrons and external force in a simple

relation.

Effective mass is related to the electron state and structure of energy
bands.

band bottom: “+” sign

€ 9

band top: - sign 13
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8.2 Electron Motion in a Constant Electric Field

I. Electron in a constant electric field

Under the external field E

h%=—eE
dz

dk __eE

dr h

Since electrons distribute

uniformly in A-space, every single

state move in the same velocity:

()= K(0)- " "
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8.2 Electron Motion in a Constant Electric Field

I1. Energy band filling and conductivity
full band: a band with all 2/V energy levels filled
partially filled band: some of the levels are occupied by electrons
For each band:
slk)=e(-k)  vl-k)=-v(k)
Electrons of k and — k have the same velocity, moving oppositely.

Absence of external fields: full/partially filled band, £ and — k
electrons move anti-parallel and their contributions cancel,

giving rise to no net electrical current. o
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presence of external field:
Hfull band: under external fields, all electron states change

from one k state to another with the same rate. Due to the

periodicity of lattice, k-distribution is intact and no net current
16

can be produced in this way.
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MPartially filled band: v" Partially filled band can conduct

Only a part of states are occupied electricity under external fields

by electrons. Due to the effect of
external fields, the finnal k-
distribution will be asymmetric,
making two different numbers of
electrons moving parallel and
anti-parallel to fields, and thus a

net electricity can exist.

17
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II1. Nearly full band and hole
There exist one state ; unoccupied by electron, now the

band is not fully filled nearly full band.

A current I, is induced by applying an external field.

If we put an electron in state k, the current of the electron is:
—ev(k)

By filling this single electron, the energy band is full and net

electrical current is:

I, +(cen(k))=0

|IE = eﬁ(l?x @
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when state [ is unoccupied, electricity in a nearly full band is
just like being produced by a positive charge e, whose velocity
is the same as that of a electron in state k. Such a carrier is
called a hole.

Collective motion of a big number of electrons can be effectively

described as the motion of a few holes.

Under electric field F, all the electron states in nearly full
d(7k)

band moves following the equation f =
dz

Acceleration of the empty state is:

)= () w

e
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Generally, empty state exists near band top, which
corresponds to negative effective mass m_ , define the

effective mass of hole as:

m)(k)=—m (k)

dy (E ) ek

dr mZ(E)

Hole can be regarded as a particle with both postive charge

and effective mass. 20
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IV. Conductor, Semiconductor, and Insulator
v" In practical crystals, electrons fill up energy bands from

low energy to high, until the band where valence electrons
occupy ---valence band.

v" The higher bands are empty---empty band. The energy
interval between fop of valence band and bottom of neareast

empty band is called forbidden band (gap).

Conductor: valence band is partially filled

r semimetal—full band, but gap vanishes or has band overlaps
non-

condu < semiconductor—full band, but gap is narrow (0-2eV)
ctor:

\ insulator—full band and gap is wide (much larger than 2¢V)
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Energy

Insulator Metal Semimetal Semiconductor Semiconductor

Figure 1 Schematic electron occupancy of allowed energy bands for an insulator, metal, semi-
metal, and semiconductor. The vertical extent of the boxes indicates the allowed energy regions;
the shaded areas indicate the regions filled with electrons. In a semimetal (such as bismuth) one
band is almost filled and another band is nearly empty at absolute zero, but a pure semiconduc-
tor (such as silicon) becomes an insulator at absolute zero. The left of the two semiconductors
shown is at a finite temperature, with carriers excited thermally. The other semiconductor is
electron-deficient because of impurities.
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8.3 Electron Motion in a Constant Magnetic Field

8.3 Electron Motion in a Constant Magnetic Field

I. Semiclassical motion of electrons in a constant magnetic field

when only constant magnetic field is present:

#()="1v,4(F)

suppose B is along z direction

dk . k- dk
>since—J.B,wehave%-B=0 =0
dr dr dr

24
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E> k,=c

The component of f parallel to the magnetic field is a constant.

k k
> since d—J_v, d—ov=0 ol
ds dzs
Energy of electron g(k) do not
change with time, electrons are

moving on the isosurface in k space.

Electrons move along the cross line

between plane normal to magnetic

field B and the isoenergetic surface. .
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8.3 Electron Motion in a Constant Magnetic Field

1. free electron:

_\ 'k’
elk)=——
®)="
( hk
substitute it into E.QO.M: k)= .
dk _
~=_“kxB
dz m
( dk, — _ﬁ k
dz m
their dk, eB
3 =k
components: ds m
dkz 0 k_ is a constant, electron is in a uniform

\ dt circular motion (k,—k, plane).
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Period:

Angular
Frequency:

Isoenergetic surface of free electron is sphere, the

intersection line with planes normal to k_are a series

of circles.

FIT AR
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27am
eB

T_

a =

c

8.3 Electron Motion in a Constant Magnetic Field

eB

cyclotron

”

Projection

m frequency

|
|
|
1’
l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

Free electron is in a linear unform motion along
magetic field, and in a unifrom circular motion
perpendicular to it. As a result, the electron is

in a helical motion in real space. 27
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8.3 Electron Motion in a Constant Magnetic Field

2. Bloch electrons

Isoenergetic surface is not necessarily a sphere, and the orbit
is not necessarily a circle.

@, = . m_; —cyclotron motion mass
Period:
dk
T(g, kz)= 2—” — f f
o, dk/dt B v,

Y, component of electron velocity perpendicular to magnetic field

28
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8.3 Electron Motion in a Constant Magnetic Field

kx

(a) (b)

A(k)---- a vector pointing from ¢ to & + dg, perpendicular

to electron orbits, and passes through j point.

Ae =Ty, |A(K) 29
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8.3 Electron Motion in a Constant Magnetic Field

T(gk)=27t=h2§A(E)dk n* 8
Y @ eBY Ae  eBoe

c

A(g, )

A(e,kz)----area in k space surounded by orbit (g, k).

Y = 27 eB
c hZ A k
68/ 0 (8’ z) orbital property
. hz
— A
e = 27 O (8’ )

Unit vector B is along the direction of magnetic field:

Bx(hdk) Bxlev(@)xB] >

dzs

30
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th(dk) eBirl

d# ds

L (0)-r,0)==" Bx[k()- k()]

In the direction perpendicular to field, the real space orbit of
electrons is to rotate the f space orbit by 90° with respect to

the field direction, and multiply a factor of //eB.

Along magnetic field (z) direction:
1 O¢

z2(t)=2(0)+ _[Ot v V= n ok,

For free electron, it is linear uniform motion; while for Bloch
electrons this is not necessarily true. 31
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8.3 Electron Motion in a Constant Magnetic Field

I1. Free Electrons in a constant Magnetic Field: A Quantum Theory

A

Absence of field: g =5 =— " _Vy*

»
2m 2m
A1 .. -
Presence of field: H = 2—(1) + eA)2
m

A is magnetic vector potential.
Uniform field along 7 axis, i.e.,

B=(0,0,B)
A=(0,Bx,0)

Schrodinger Equation:

(i + BV y(r) =2y (7)

32
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8.3 Electron Motion in a Constant Magnetic Field

h2k? 1 V=0919 29
ek ,v)="—"¢ +(v+)hwc
2m 2 |8V+1(kz)—6'v (kz)= ha)cl
=§ 27

(/)

c

cyclotron frequency kX, =—n_ p_an integer
m L ¢

compared to free electron eigen energy:

272
8(]2)‘ hzki N h ky N hzkzz

2m 2m 2m

v' After applying a magnetic field along z axis, the electron is still
in a linear uniform motion along z axis, with energy 7k’ /2m.

v' Perpendicular to magnetic field, electron motion is quantized,
change from continuous energy 7k’ /2m+ 1k’ /2m to a series
of 1D sub-band (v +1/ Z)hwc Landau Level. 33
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B,

ﬁ

T
111

Empty States

t‘g N

m

-
A o6
/ ck_ _/ D \ LS
=
;bc\ /jk‘ %
: : m Occupied
States

0

34
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In k-space, the
allowed states

collapsed to the

L ] L L ] L L4 L ] ® L L
e * L L] - @ . ® L]
L] 2 L J @ - L [ ] L »
£l L & L L . *® L .

L L @ - ® L . L ]

[
L
L ]
L]
]
L 4
L
L ]
L ]

Landau rings.

Area between two N.N. Landau rings,

2rmAE  2rmho, 2meB

/S S
A constant proportional to external field, the degeneracy of each
Landau ring is

A = 7A(K2 + k2 )=

r 2e
p:AA.HQ:;BLZ 5
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8.4 Fermi Surface & Density of States
8.4 Fermi Surface & Density of States

I. Higher Brillouin Zone

Consisted of independent =K —

blocks, each of which has = l/i*P = A
the same volume as the , | - : l/d;

reciprocal primitive cell. i ‘ * £

36
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8.4 Fermi Surface & Density of States

I1. Fermi Surface

1. Ground State Fermi Energy of Free Electron Gas

v Ground State: electrons fill up the quantum states from low
energy to high levels (Pauli Exclusive Principle). All the states
below Fermi energy &, are full, while those higher than g are
empty.

v" The interface between occupied and unoccupied k-levels

—Fermi Surface.

n'k’
Free Electron: g(k)= 5,  FermiSurfaceis a sphere

N electrons £ fills up a ball of radius k - in k-space.

1/3
k, = (372'2”)/ n electron density 37
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8.4 Fermi Surface & Density of States

2. Construction of Fermi Surface

(1) Free electron Fermi surface (take square lattice as an example)

— (zﬂn)l/z
(a) plot extended B.Z.

(b) plot Fermi circle
Shape and size of B.Z. are determined by crystal structure,

Fermi radius is related to electron density in crystal.

(c) move the Fermi sectors in extended B.Z. to the

equivalent position of reduced B.Z.
38
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8.4 Fermi Surface & Density of States

1st zone 2nd zone 3rd zone

39
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8.4 Fermi Surface & Density of States

Fermi Surface in 3rd B.Z. (a extended zone representation) 40
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8.4 Fermi Surface & Density of States

(2) Fermi Surface of Nearly Free Electrons
Presence of periodic potential makes the Fermi surface no
more a sphere. The corrections are as followings:
(a) Energy jumps at B.Z. boundary
(b) Isoenergetic surfaces are perpendicular to BZ boundary

(¢) Periodic potential smoothens the corners/edges of Fermi surface

41

(a) (b)
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8.4 Fermi Surface & Density of States

2nd zone 3rd zone

II1. Density of States (D.O.S.)

DOS g(é‘): # of electron states (spin degrees of freedom

included) in unit energy interval, in sample of unit volume.

DOS of n-th energy band: g, (6‘) ‘ g(g )= Zgn (3 )

42
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8.4 Fermi Surtface & Density of States

In fspace, # of states with energy within £ ~¢ + dg are:

AZ = d AV
(27)
AV : volume in k-space, between & ~et+de isoenergetic surfaces.
AV = [ dsdk,
dk, : distance between two isoenergetic surfaces (normal direction)
Ae=dk, |V, e(k)

\% ke(E) is energy change along normal direction of isosurface

V ds
= 7= oyl e

43
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3 ds
8(2)= (27:)3 I ‘Vke(E)‘

8.4 Fermi Surface & Density of States

Each k-state can contain two electrons of opposite spin orientation

2,(¢)=

4’ I v,&,(k)

Free electron density of states:
g(&) e

Nearly free electrons:

B Vicinity of original point: isoenergetic surface is a sphere,

like the free electrons »
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B Close to BZ boundary: isoenergetic surface is convex—larger
enclosed volume —larger DOS

boundary A: g(e) —> 8 (8) 9 Q ¢

E>¢&, g(&)decreases

(k)= 5(—k); | =25
o NNz
B _Og| Oe Energy gradient is
ek)=elk+G); ok - ok e zero at BZ boundary
2 Okj, Ok|1, Ok|1, 45
2 2 2
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g(e)!
[T
0 -&

van Hove singularity:

for some k point, |V, &|= 0, giving may rise to a divergent g(¢)
which is still 3D integrable: g(¢)is finite, but dg(g)/de

diverges.

46
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8.5 Experimental Measurement of Fermi Surface

Research of Fermi surface: magnetoresistance, anomalous skin
effect, cyclotron resonance, Shubnikov-de Haas effect, and de

Haas —van Alphen effect.

I. Orbital quantization of Bloch electrons

With Onsager & Lifshitz semiclassical approximation, the
electron orbitals in magnetic fields are quantized according to

Bohr-Sommerfeld relation:

tfp-d? = (v+y)27rh‘

v is an integer, y is phase correction factor, y=1/2 for free electrons.
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In magnetic field: p =7k —eA
A is vector potential: B=V x A4

| p-dr = f(nk —e4)- dr

—_—

take integral of h((il—k —ev(k)xB
t

ik =—eF x B = —e(y,i\: — xj})B, from which we get
V x hk =2eB

Due to Stokes Theorem: $F-dl = [[(Vx F)-dS
[(nk - e4)-dF = [[ eB-dS = eBA,

Ar: Area surrounded by electron oribtals in real space. 48
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eBA =(v+y2ah A = %(w 7)
e

Area of electron orbitals in k space:

A,(k,)= (e:)z ZﬂeB (v+7)

Remember:

as unit 7 (£)-7,(0)= _Z; Bx[k(r)-k(0)]

2mweB
h

In Fermi surface experiments we may be interested in the increment
of B for which two successive orbits, v and v+1, have the same area
in k-space on the Fermi surface. The areas are equal when

quantized with

1
A _ _ =
E— (B B) h 49
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I1. de Haas-van Alphen effect, 1930

Magnetic susceptibility of metal oscillates with changing

inverse of magnetic field (1/B)

v" Related to the behavior of electrons near Fermi surface in strong

magnetic field
v Due to quantization of electron orbitals in magnetic fields
v The shape of Fermi surface can be obtained by measuring oscillation

period

Apply a strong magentic field to a pure sample (containing
free electrons) at low temperatures
T =0K and B = 0, all the energy levels below Fermi energy

are all filled, and the levels above are all empty. 50
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B=0 B, B, B=0 B,
€ - E
i 3
€} These regions are )
{]lll}' schematic
' eh
ﬁm" T m*e B, L2 28 5
D=M-——.2="2BIL
4 h
0 {
{a) (b) (c) (d) (e)

Figure 23 Explanation of the de Haas-van Alphen effect for a free electron gas in two dimen- The electron transfer to
sions in a magnetic field. The filled orbitals of the Fermi sea in the absence of a magnetic field are lower Landau levels

shaded in @ and d. The energy levels in a magnetic field are shown in b, ¢, and e. In b the field has

a value B, such that the total energy of the electrons is the same as in the absence of a magnetic can occur because their
field: as many electrons have their energy raised as lowered by the orbital quantization in the mag- .

netic field B,. When we increase the field to B, the total electron energy is increased, because the degeneracy D increases
uppermmt electl ons have their energy raised. In e for field B, the energy is again equal to that for as B is increased.

the field B = 0. The total energy is a minimum at points such as B,, B;. B, . . . , and a maximum

near points such as B,, B, . . . .
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Suppose at B = B, critical energy of v-th subband is &,

g, =(v+1)heB‘=8F
2) m

B enhances, and & . ; enhances correspondingly, at B = B,

1)\, eB
E, 1= (V—)hez =&,
2] m

when field increases from B, to B,, total energy changes from
maximun to minimun and then to maximum again, and

accomplishes a period of change, who satisfies:

A1) 1_ 1 _ eh
B) B, B, me,

52
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total energy changes with a period A(l/ B)

Magnetic Moment: M(B):—g—l; and

susciptibilituy changes periodically 1/B

1 1 2 e 1 eh 27e
A( ——)= s A — |= =
BU+1 BU h (Bj m&‘F hAe(gF,kz)
27mm .
A, = 72 Ep Fermi surface

Measurement of Fermi surface:

Constant-energy
surface

&§(k)=Ep

For Bloch electrons, there are also quantization in magnetic fields. Total

energy, magnetic susceptibility, and other quantities ocillates with respect

to 1/B, with period inversly propertional to the cross section of Fermi surface

perpendicular to magnetic field.
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Change the direction of magnetic field, and measure the period,
one can get the cross section 4 on the corresponding direction.

Collect 4, on ditferent directions, one can determine the shape of
Fermi surface.

II1. Electron cyclotron resonance (ECR)

Crystal electrons are in a cyclotron motion under a magnetic

field, with frequency o = eB
c m*

c

Apply a second magnetoelectric field with high frequency o,
perpendicular to the constant field. When @ = @,, energy of
alternating magnetic field can be obsorbed by ECR, thus

determine the effective mass of electron. 54
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8.6 Band structure of typical metals

8.6 Band structure of typical metals
I. Alkali metals

Li, Na, K, Rb, Cs: monovalent metal.

crystal structure: BCC

reciprocal lattice: FCC

free electron: Fermi sphere with radius &,

3 2 . .
k. =37"n n=— ais lattice constant
a

1

32
kF=( 3)3 7 _0.62027
47 ) a a
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shortest distance between center to a face of First BZ

(dodecahedron):

k. =0. 707 2%
a
ke _ o877
k

spherical Fermi surface is completely contained in first BZ

v Agree with experimental results.
» Valence electron in alkali metals behaves quite much
like free electron. One can use free electron gas theory

to discuss the transport properties of alkali metals. -
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I1. Noble Metal

Cu, Ag, Au: an s-electron in outer shell, s-band and d-band has
some overlap

8.6 Band structure of typical metals

Crystal Structure: FCC
Reciprocal Lattice: BCC
1st B.Z.: Truncated Octahedron

s electron: free electron, Fermi surface is also within 1st BZ,

but quite close to interface along <111> direction:

L2 =0.903
k

Fermi sphere is distorted along these directions, and makes

contacts with adjacent Fermi surface through center of eight

58
hexagonal faces.
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8.6 Band structure of typical metals
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I11. Divalent metal

8.6 Band structure of typical metals

Be, Mg, Zn, Cd: hexagonal closely packed (h.c.p.)

Ca, Sr, Ba: cubic system

Two s electrons in outer shell, s
band has overlap with neigboring

higher empty energy band.

Fermi surface is quite different

from a sphere.
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I11. Transition Metal

It contains partially filled 4 shell.

v d band is quite narrow, has
large DOS, and share overlap
with s band.

g(e)

v Fermi energy is within d band,
quite different from those of
simple metals, and can not be
obtained by perturbative
modification of free electron
Fermi sphere.

Density of States
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8.7 Achievement & Limitation of Band Theory

I. Main conclusion of energy band theory
(i) Crystal electron wavefunction is in a form of Bloch function

(ii) Electron energy levels in crystal consist of a series of
quasi-contineous levels, each of which is called a energy band.
Between two neigboring bands there might exist energy gap

(forbidden band).

(iii) Each energy band contains /V quantum states, which
equals the number of primitive cells. If spin degree of

freedom is taken into consideration, there are 2N states. 63
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(iv) Crystal electrons fill bands from lowest level to higher ones.

The bands include: full band, partially filled band, and empty band.

(v) Different band can share some overlap, and the gap disappears.

I1. Main achievements of energy band theory

(a) Explained the difference between conductor, insulator,
and semiconductor, providing a uniform framework for

studying the very diverse properties of solid state materials.

(b) With the concept of hole, energy band theory can explain

the appearance of positive Hall coefficient.
64



| f‘=’ﬁ NEa b R E AL K*-‘? 8.7 Achievement & Limitation of Band Theory

\\‘* /BEIHANG UNIVERSITY

(¢c) Based on energy band theory, one can explain the light
absorption and emmision, various fransport and scattering
processes of electrons in external fields (electric, magnetic,

impurity potential, etc.)

II1. Limitation of energy band theory

Energy band theory is built on the basis of single electron

approximation, electron-electron and electron-lattice

correlations are ignored.
(1) Cannot explain conductivity of transition metal compounds.

(2) Cannot explain the metal-insulator transition for several

metals when the lattice constant increases. s
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(3) Cannot explain problems concerning electron-electron or
electron-phonon interactions, for instance, superconductivity;

and collective excitations in solids, like plasmon in metals.

(4) Cannot be applied to incomplete solid, solid state surface, or

amorphous metal.
Example: metal-insulator transition

During metal dilation, the lattice constant enhances.
Accordign to energy band theory, the metal should remain

to be conductor all along, which, however is not true.
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N\ 8.7 Achievement & Limitation of Band Theory

oA
Dilation of soldium: when a

\ increases to a_, electric
~

\. conductivity decreases to zero,
_
a, a becoming a insulator.

Bloch electrons exist in the whole crystal, and thus are non-
local. Electron-electron interactions on average is very small

and can be ignored.

When a increases, the band width decreases; when « is large

enough, the band width is so narrow such that band theory

67
no longer works.
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8.7 Achievement & Limitation of Band Theory

When a is very large, crystal electrons are no longer in a

Bloch form, but in a localized form.

Strong electron-elctron correlation should not be ignored.

Even though the energy levels are still in a band form, and
the band is still “half filled”, the metal becomes an insulator

due to strong electron-electron correlation.

Strongly correlated electronic systems! => True many-body problem!



