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8.1  Semiclassical Motion of Electrons
I. Average velocity in a crystal

Consider a electron eigen state

Electron has no fixed velocity, but has an average value
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due to Bloch theorem:
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Hamiltonian is a Hermitian operator, the second terms cancel

Quantum mechenical wave package, a Bloch wave.

8.1  Semiclassical Theory of Electron Motion
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Kind Reminder: phase and group velocities 

qg ¶
¶= wu

qp
wu =

group velocity：describe the speed of the envelope of the wave 
packet (given a small range of q, such that the envelope does not 
distort too much during propagation).

phase velocity：the rate at which the phase of the wave propagates 
in space, for a pure lattice wave with specific frequency w and 
lattice vector q

8.1  Semiclassical Theory of Electron Motion
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n velocity is perpendicular to the isoenergy surface in    spacek
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When the isosurface is not a sphere,    is generally not parallel to   .k
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free electrons: 

m
k

m
pv

!
"

!
! ==

kv
!! µ kv

!! //
n Average velocity of crystal electron

depends on            and    . ( )kn

!
e k

!

( ) ( )kk
!!

-= ee ( ) ( )kvkv
!!!! --=

II. Semiclassical model of electron motion
Response of crystal electron to external fields—treated classically

Electron state in periodic lattice—quantum mechanical way (in 

terms of energy band theory).
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Bloch electron in an external force f
!
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The electron energy change equals the work external force 
does in an unit time:
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The changing ratio of      is proportional to external force   ，

and has the same direction. 

ü In a similar form as Newton's second law, but with only 

external forces    .
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III. Acceleration and Effective Mass

k
!
" quasi momentum ü Electron in an external electric & 

magnetic fields
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2. Effective mass
1D:
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ü Effective mass is a rank-2 tensor (a matrix), generally the 

acceleration of electrons is not neccesarily parallel to external 

forces. Due to the fact that electrons not only “feels” external 

forces, but are also affected by periodic potentials.

ü Effective mass includes the effects of crystal potentials, leaving 

the acceleration of electrons and external force in a simple 

relation.

Effective mass is related to the electron state and structure of energy 
bands.

band bottom：“+” sign

band top：“–” sign

8.1  Semiclassical Theory of Electron Motion
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8.2 Electron Motion in a Constant Electric Field
I. Electron in a constant electric field

Under the external field E
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Since electrons distribute 

uniformly in k-space, every single 

state move in the same velocity:
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II. Energy band filling and conductivity

full band：a band with all 2N energy levels filled 

partially filled band：some of the levels are occupied by electrons

For each band：
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Electrons of     and       have the same velocity, moving oppositely.k
!

k
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Absence of external fields: full/partially filled band,     and   

electrons move anti-parallel and their contributions cancel, 

giving rise to no net electrical current.
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presence of external field:
nfull band: under external fields, all electron states change 

from one    state to another with the same rate. Due to the 

periodicity of lattice, k-distribution is intact and no net current 

can be produced in this way.

k
!

8.2 Electron Motion in a Constant Electric Field
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nPartially filled band:

Only a part of states are occupied 

by electrons. Due to the effect of 

external fields, the finnal k-

distribution will be asymmetric, 

making two different numbers of 

electrons moving parallel and 

anti-parallel to fields, and thus a 

net electricity can exist.

ü Partially filled band can conduct 

electricity under external fields

8.2 Electron Motion in a Constant Electric Field
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III. Nearly full band and hole

A current       is induced by applying an external field. kI !

If we put an electron in state    , the current of the electron is:

( )kve !!-

There exist one state    unoccupied by electron, now the 

band is not fully filled——nearly full band.
k
!

By filling this single electron, the energy band is full and net 

electrical current is:
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when state    is unoccupied, electricity in a nearly full band is 

just like being produced by a positive charge e, whose velocity 

is the same as that of a electron in state   . Such a carrier is 

called a hole.

k
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k
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Collective motion of a big number of electrons can be effectively 

described as the motion of a few holes.

Under electric field    , all the electron states in nearly full 

band moves following the equation                   .

Acceleration of the empty state is:
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Generally, empty state exists near band top,  which 

corresponds to negative effective mass  , define the 

effective mass of hole as:
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Hole can be regarded as a particle with both postive charge 

and effective mass.

8.2 Electron Motion in a Constant Electric Field



IV. Conductor, Semiconductor, and Insulator
ü In practical crystals, electrons fill up energy bands from 

low energy to high, until the band where valence electrons 

occupy ---valence band.  

ü The higher bands are empty---empty band. The energy 

interval between top of valence band and bottom of neareast 

empty band is called forbidden band (gap).

Conductor: valence band is partially filled

non-
condu
ctor：

semimetal—full band, but gap vanishes or has band overlaps

semiconductor—full band, but gap is narrow (0-2eV)

insulator—full band and gap is wide (much larger than 2eV)

8.2 Electron Motion in a Constant Electric Field
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8.3  Electron Motion in a Constant Magnetic Field
I. Semiclassical motion of electrons in a constant magnetic field
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The component of     parallel to the magnetic field is a constant.
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Energy of electron do not 

change with time, electrons are 

moving on the isosurface in k space.
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Electrons move along the cross line 

between plane normal to magnetic 

field     and the isoenergetic surface.B
!
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Period:
eB
mT p2

=

Angular 
Frequency: m

eB
Tc ==
pw 2 ——cyclotron 

frequency

Isoenergetic surface of free electron is sphere, the 

intersection line with planes normal to kz are a series 

of circles.
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Free electron is in a linear unform motion along 

magetic field, and in a unifrom circular motion

perpendicular to it. As a result, the electron is 

in a helical motion in real space.
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2. Bloch electrons
Isoenergetic surface is not necessarily a sphere, and the orbit 
is not necessarily a circle.
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cm —cyclotron motion mass
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^v component of electron velocity perpendicular to magnetic field
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---- a vector pointing from e to e + de, perpendicular 

to electron orbits, and passes through     point.
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In the direction perpendicular to field, the real space orbit of 

electrons is to rotate the space orbit by 900 with respect to 

the field direction, and multiply a factor of         . 
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For free electron, it is linear uniform motion; while for Bloch 
electrons this is not necessarily true.
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II. Free Electrons in a constant Magnetic Field: A Quantum Theory

Absence of field: 2
22
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ˆˆ Ñ-==

mm
pH !

Presence of field: ( )2ˆ
2
1ˆ Aep
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is magnetic vector potential.A
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Uniform field along z axis, i.e.,
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Schrödinger Equation:
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ü After applying a magnetic field along z axis, the electron is still 
in a linear uniform motion along z axis, with energy                . 

ü Perpendicular to magnetic field, electron motion is quantized, 
change from continuous energy   to a series 
of 1D sub-band ——Landau Level.
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In k-space, the 

allowed states 

collapsed to the 

Landau rings.

Area between two N.N. Landau rings,
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A constant proportional to external field, the degeneracy of each
Landau ring is
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8.4 Fermi Surface & Density of States

I. Higher Brillouin Zone

Consisted of independent 

blocks, each of which has 

the same volume as the 

reciprocal primitive cell.

8.4 Fermi Surface & Density of States
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II. Fermi Surface
1. Ground State Fermi Energy of Free Electron Gas

ü Ground State: electrons fill up the quantum states from low 
energy to high levels (Pauli Exclusive Principle). All the states 
below Fermi energy eF are full, while those higher than eF are 
empty. 

ü The interface between occupied and unoccupied k-levels 
—Fermi Surface.

Free Electron: ( )
m
kk
2

22
!

=e Fermi Surface is a sphere

N electrons fills up a ball of radius      in k-space.k
!

Fk

( ) 3123 nkF p= n——electron density

8.4 Fermi Surface & Density of States
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2. Construction of Fermi Surface

(1) Free electron Fermi surface (take square lattice as an example)

( ) 212 nkF p=

(a) plot extended B.Z.

(b) plot Fermi circle

Shape and size of B.Z. are determined by crystal structure, 

Fermi radius is related to electron density in crystal.

(c) move the Fermi sectors in extended B.Z. to the 

equivalent position of reduced B.Z.

8.4 Fermi Surface & Density of States
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8.4 Fermi Surface & Density of States



40Fermi Surface in 3rd B.Z. (a extended zone representation)

8.4 Fermi Surface & Density of States
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(2) Fermi Surface of Nearly Free Electrons

Presence of periodic potential makes the Fermi surface no 

more a sphere. The corrections are as followings:

(a) Energy jumps at B.Z. boundary

(b) Isoenergetic surfaces are perpendicular to BZ boundary

(c) Periodic potential smoothens the corners/edges of Fermi surface

8.4 Fermi Surface & Density of States
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III. Density of States (D.O.S.)

DOS of n-th energy band： ( )eng

DOS : # of electron states (spin degrees of freedom 

included) in unit energy interval, in sample of unit volume.
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ngg ee
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In     space,  # of states with energy within e ~e + de are：k
!

( )
VVZ D=D 32p

: volume in k-space, between e ~e+de isoenergetic surfaces.VD

ò ^=D ksV dd
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Each k-state can contain two electrons of opposite spin orientation
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Free electron density of states：

( )g e eµ

Nearly free electrons：

n Vicinity of original point: isoenergetic surface is a sphere, 
like the free electrons

8.4 Fermi Surface & Density of States
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nClose to BZ boundary: isoenergetic surface is convex→larger 
enclosed volume →larger DOS

boundary A： ( ) ( )ee maxgg ®

Aee >
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Energy gradient is 
zero at BZ boundary
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( )eg

e

van Hove singularity:

for some k point, , giving may rise to a divergent 

which is still 3D integrable: is finite, but                    

diverges.

0keÑ = ( )g e

( )g e d ( ) / dg e e

8.4 Fermi Surface & Density of States



Research of Fermi surface：magnetoresistance, anomalous skin 

effect, cyclotron resonance, Shubnikov-de Haas effect, and de 

Haas –van Alphen effect.

I. Orbital quantization of Bloch electrons

With Onsager & Lifshitz semiclassical approximation, the 

electron orbitals in magnetic fields are quantized according to 

Bohr-Sommerfeld relation:

( ) !"" pgn 2d +=×ò rp

v is an integer, g is phase correction factor, g =1/2 for free electrons.

8.5 Experimental Measurement of Fermi Surface

8.5 Experimental Measurement of Fermi Surface
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In magnetic field: Aekp
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rA : Area surrounded by electron oribtals in real space.

8.5 Experimental Measurement of Fermi Surface

Due to  Stokes Theorem:   

from which we get
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8.5 Experimental Measurement of Fermi Surface
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In Fermi surface experiments we may be interested in the increment 
of B for which two successive orbits, ν and ν+1, have the same area 
in k-space on the Fermi surface. The areas are equal when
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and B = 0, all the energy levels below Fermi energy 

are all filled, and the levels above are all empty. 

II. de Haas-van Alphen effect, 1930
Magnetic susceptibility of metal oscillates with changing 

inverse of magnetic field (1/B)

Apply a strong magentic field to a pure sample (containing 

free electrons) at low temperatures 

ü Related to the behavior of electrons near Fermi surface in strong 
magnetic field

ü Due to quantization of electron orbitals in magnetic fields
ü The shape of Fermi surface can be obtained by measuring oscillation 

period

K 0=T

8.5 Experimental Measurement of Fermi Surface



8.5 Experimental Measurement of Fermi Surface

The electron transfer to 
lower Landau levels 
can occur because their 
degeneracy D increases 
as B is increased.
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Suppose at , critical energy of n-th subband is eF1BB =
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when field increases from B1 to B2, total energy changes from 

maximun to minimun and then to maximum again, and 

accomplishes a period of change, who satisfies:
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total energy changes with a period ( )B1D

Magnetic Moment： and 

susciptibilituy changes periodically B1

Fe
mA ep
2

2
!

= ——Fermi surface 

Measurement of Fermi surface:
For Bloch electrons, there are also quantization in magnetic fields. Total 

energy, magnetic susceptibility, and other quantities ocillates with respect 

to     , with period inversly propertional to the cross section of Fermi surface 

perpendicular to magnetic field.
B1

8.5 Experimental Measurement of Fermi Surface
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Change the direction of magnetic field, and measure the period, 
one can get the cross section      on the corresponding direction.eA
Collect      on different directions, one can determine the shape of 
Fermi surface.

eA

III. Electron cyclotron resonance (ECR)
Crystal electrons are in a cyclotron motion under a magnetic 

field, with frequency
*=
c

c m
eBw

Apply a second magnetoelectric field with high frequency w, 

perpendicular to the constant field. When , energy of 

alternating magnetic field can be obsorbed by ECR, thus 

determine the effective mass of electron.

8.5 Experimental Measurement of Fermi Surface

cww =
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8.5 Experimental Measurement of Fermi Surface
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8.6 Band structure of typical metals
I. Alkali metals

Li, Na, K, Rb, Cs: monovalent metal.

crystal structure: BCC

reciprocal lattice: FCC

free electron: Fermi sphere with radius kF

nkF
23 3p= 3

2
a

n = a is lattice constant

aa
kF

pp
p

2620.02
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3 3
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ö
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è
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8.6 Band structure of typical metals
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shortest distance between center to a face of First BZ 

(dodecahedron):

a
k p2707.0min =

spherical Fermi surface is completely contained in first BZ

ü Agree with experimental results.

Ø Valence electron in alkali metals behaves quite much 

like free electron. One can use free electron gas theory 

to discuss the transport properties of alkali metals.

877.0
min

=
k
kF

8.6 Band structure of typical metals
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II. Noble Metal
Cu, Ag, Au: an s-electron in outer shell, s-band and d-band has 
some overlap

Crystal Structure: FCC
Reciprocal Lattice: BCC
1st B.Z.: Truncated Octahedron

s electron: free electron, Fermi surface is also within 1st BZ, 

but quite close to interface along <111> direction:

903.0
min

=
k
kF

Fermi sphere is distorted along these directions, and makes 
contacts with adjacent Fermi surface through center of eight 
hexagonal faces.

8.6 Band structure of typical metals
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8.6 Band structure of typical metals



60

dHvA effect of gold, B//[110]

8.6 Band structure of typical metals
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III. Divalent metal

Be, Mg, Zn, Cd: hexagonal closely packed (h.c.p.)

Ca, Sr, Ba: cubic system

Two s electrons in outer shell, s 

band has overlap with neigboring 

higher empty energy band. 

Fermi surface is quite different 

from a sphere.

8.6 Band structure of typical metals



62

III. Transition Metal

It contains partially filled d shell.

ü d band is quite narrow, has 
large DOS, and share overlap 
with s band.

ü Fermi energy is within d band, 
quite different from those of 
simple metals, and can not be 
obtained by perturbative 
modification of free electron 
Fermi sphere. 

8.6 Band structure of typical metals
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8.7 Achievement & Limitation of Band Theory

I. Main conclusion of energy band theory

(i) Crystal electron wavefunction is in a form of Bloch function

(ii) Electron energy levels in crystal consist of a series of 

quasi-contineous levels, each of which is called a energy band. 

Between two neigboring bands there might exist energy gap 

(forbidden band).

(iii) Each energy band contains N quantum states, which 

equals the number of primitive cells. If spin degree of 

freedom is taken into consideration, there are 2N states.

8.7 Achievement & Limitation of Band Theory
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(iv) Crystal electrons fill bands from lowest level to higher ones. 

The bands include: full band, partially filled band, and empty band.

(v) Different band can share some overlap, and the gap disappears.

II. Main achievements of energy band theory

(a) Explained the difference between conductor, insulator, 

and semiconductor, providing a uniform framework for 

studying the very diverse properties of solid state materials.

(b) With the concept of hole, energy band theory can explain 

the appearance of positive Hall coefficient.

8.7 Achievement & Limitation of Band Theory
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(c) Based on energy band theory, one can explain the light 
absorption and emmision, various transport and scattering 
processes of electrons in external fields (electric, magnetic, 
impurity potential, etc.)

III. Limitation of energy band theory
Energy band theory is built on the basis of single electron 
approximation, electron-electron and electron-lattice 
correlations are ignored. 

(1) Cannot explain conductivity of transition metal compounds.

(2) Cannot explain the metal-insulator transition for several 

metals when the lattice constant increases.

8.7 Achievement & Limitation of Band Theory
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(3) Cannot explain problems concerning electron-electron or 

electron-phonon interactions, for instance, superconductivity; 

and collective excitations in solids, like plasmon in metals.

(4) Cannot be applied to incomplete solid, solid state surface, or 

amorphous metal.

Example: metal-insulator transition

During metal dilation, the lattice constant enhances. 

Accordign to energy band theory, the metal should remain 

to be conductor all along, which, however is not true.

8.7 Achievement & Limitation of Band Theory
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ca a

s
Dilation of soldium: when a 

increases to ac, electric 

conductivity decreases to zero, 

becoming a insulator.

Bloch electrons exist in the whole crystal, and thus are non-

local. Electron-electron interactions on average is very small 

and can be ignored.

When a increases, the band width decreases; when a is large 

enough, the band width is so narrow such that band theory 

no longer works.

8.7 Achievement & Limitation of Band Theory



When a is very large, crystal electrons are no longer in a

Bloch form, but in a localized form.

Strong electron-elctron correlation should not be ignored.

Even though the energy levels are still in a band form, and

the band is still “half filled”, the metal becomes an insulator

due to strong electron-electron correlation.

8.7 Achievement & Limitation of Band Theory

Strongly correlated electronic systems! => True many-body problem!


